The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various local probes, prominent examples including superconducting or quantum dot based tunnel junctions, classical and quantum resistors, and Raman thermography. Beyond time-averaged properties, valuable information can also be gained from spontaneous fluctuations of current (noise). From these perspective, however, a fundamental constraint is set by current conservation, which makes noise a characteristic of the whole conductor, rather than some part of it. Here we demonstrate how to remove this obstacle and pick up a local noise temperature of a current biased diffusive conductor with the help of a miniature noise probe. This approach is virtually noninvasive for the electronic energy distributions and extends primary local measurements towards strongly non-equilibrium regimes.
Local noise in a diffusive conductor / Tikhonov, E. S; Shovkun, D. V; Ercolani, Daniele; Rossella, Francesco; Rocci, Mirko; Sorba, Lucia; Roddaro, Stefano; Khrapai, V. S.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 6:1(2016), pp. 30621-N/A. [10.1038/srep30621]
Local noise in a diffusive conductor
ERCOLANI, Daniele;ROSSELLA, FRANCESCO;SORBA, LUCIA;
2016
Abstract
The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various local probes, prominent examples including superconducting or quantum dot based tunnel junctions, classical and quantum resistors, and Raman thermography. Beyond time-averaged properties, valuable information can also be gained from spontaneous fluctuations of current (noise). From these perspective, however, a fundamental constraint is set by current conservation, which makes noise a characteristic of the whole conductor, rather than some part of it. Here we demonstrate how to remove this obstacle and pick up a local noise temperature of a current biased diffusive conductor with the help of a miniature noise probe. This approach is virtually noninvasive for the electronic energy distributions and extends primary local measurements towards strongly non-equilibrium regimes.File | Dimensione | Formato | |
---|---|---|---|
srep30621.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.25 MB
Formato
Adobe PDF
|
2.25 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris