Targeting of myocyte enhancer binding factor 2 (MEF2) proteins to the nucleus depends on a C-terminal bipartite nuclear localization signal (NLS). By expression of green fluorescent protein (GFP)/MEF2 fusion proteins in transfected myoblasts, we show that MEF2C contains an additional 13 amino acids domain, located immediately upstream of the NLS, which contributes to its nuclear retention. We also show that the NLS present in MEF2 proteins is required for efficient nuclear localization of histone deacetylase 4 (HDAC4). In muscle cells, transfected HDAC4 is largely cytoplasmic or, to a lesser extent, pancellular. Co-transfection of either MEF2A or MEF2C causes HDAC4 to accumulate in the nucleus in association with MEF2. This effect strongly depends on MEF2 NLS; it also requires the specific interaction of HDAC4 with MEF2, since the isolated NLS is not sufficient for targeting HDAC4 to the nucleus and other nuclear proteins, such as NF-Y, cannot substitute MEF2. Therefore, we demonstrate that HDAC4, different from HDAC5, is mainly a cytoplasmic resident protein, requiring a trans-acting NLS for nuclear localization. The physiological implications of MEF2 carrying its own inhibitor to the nucleus are discussed.

Targeting of myocyte enhancer binding factor 2 (MEF2) proteins to the nucleus depends on a C-terminal bipartite nuclear localization signal (NLS). By expression of green fluorescent protein (GFP)/MEF2 fusion proteins in transfected myoblasts, we show that MEF2C contains an additional 13 amino acids domain, located immediately upstream of the NLS, which contributes to its nuclear retention. We also show that the NLS present in MEF2 proteins is required for efficient nuclear localization of histone deacetylase 4 (HDAC4). In muscle cells, transfected HDAC4 is largely cytoplasmic or, to a lesser extent, pancellular. Co-transfection of either MEF2A or MEF2C causes HDAC4 to accumulate in the nucleus in association with MEF2. This effect strongly depends on MEF2 NLS; it also requires the specific interaction of HDAC4 with MEF2, since the isolated NLS is not sufficient for targeting HDAC4 to the nucleus and other nuclear proteins, such as NF-Y, cannot substitute MEF2. Therefore, we demonstrate that HDAC4, different from HDAC5, is mainly a cytoplasmic resident protein, requiring a trans-acting NLS for nuclear localization. The physiological implications of MEF2 carrying its own inhibitor to the nucleus are discussed.

The nuclear localization domain of the MEF2 family of transcription factors shows member-specific features and mediates the nuclear import of histone deacetylase 4 / Borghi, S.; Molinari, Susanna; Razzini, G.; Parise, F.; Battini, Renata; Ferrari, Stefano. - In: JOURNAL OF CELL SCIENCE. - ISSN 0021-9533. - 114:24(2001), pp. 4477-4483.

The nuclear localization domain of the MEF2 family of transcription factors shows member-specific features and mediates the nuclear import of histone deacetylase 4

MOLINARI, Susanna;BATTINI, Renata;FERRARI, Stefano
2001

Abstract

Targeting of myocyte enhancer binding factor 2 (MEF2) proteins to the nucleus depends on a C-terminal bipartite nuclear localization signal (NLS). By expression of green fluorescent protein (GFP)/MEF2 fusion proteins in transfected myoblasts, we show that MEF2C contains an additional 13 amino acids domain, located immediately upstream of the NLS, which contributes to its nuclear retention. We also show that the NLS present in MEF2 proteins is required for efficient nuclear localization of histone deacetylase 4 (HDAC4). In muscle cells, transfected HDAC4 is largely cytoplasmic or, to a lesser extent, pancellular. Co-transfection of either MEF2A or MEF2C causes HDAC4 to accumulate in the nucleus in association with MEF2. This effect strongly depends on MEF2 NLS; it also requires the specific interaction of HDAC4 with MEF2, since the isolated NLS is not sufficient for targeting HDAC4 to the nucleus and other nuclear proteins, such as NF-Y, cannot substitute MEF2. Therefore, we demonstrate that HDAC4, different from HDAC5, is mainly a cytoplasmic resident protein, requiring a trans-acting NLS for nuclear localization. The physiological implications of MEF2 carrying its own inhibitor to the nucleus are discussed.
2001
114
24
4477
4483
The nuclear localization domain of the MEF2 family of transcription factors shows member-specific features and mediates the nuclear import of histone deacetylase 4 / Borghi, S.; Molinari, Susanna; Razzini, G.; Parise, F.; Battini, Renata; Ferrari, Stefano. - In: JOURNAL OF CELL SCIENCE. - ISSN 0021-9533. - 114:24(2001), pp. 4477-4483.
Borghi, S.; Molinari, Susanna; Razzini, G.; Parise, F.; Battini, Renata; Ferrari, Stefano
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1247497
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 52
social impact