The post-buckling and nonlinear dynamic response of shallow spherical caps subjected to external pressure is analyzed. The Novozhilov's nonlinear thin shell theory is used to express the strain-displacement relations. Following the Rayleigh-Ritz method, the displacement fields are expanded using a mixed series: Legendre polynomials in the meridional direction, harmonic functions in the circumferential direction. Once the linear analysis is completed, the displacement fields are re-expanded and the nonlinear dynamic model is obtained by using the Lagrange equations. The response of clamped caps, made of isotropic and homogeneous material, is investigated. The bifurcation analyses of equilibrium points and periodic orbits are presented by using continuation techniques. Benchmark results are provided in terms of natural frequencies and critical buckling loads. The dynamic effects due to the interaction between static and dynamic pressure are investigated. Numerical results pointed out that, under particular load conditions, dynamic bifurcation results in nonnegligible asymmetric states activation in the response of the structure.

Nonlinear dynamics and stability of shallow spherical caps under pressure loading / Iarriccio, G.; Pellicano, F.. - In: JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. - ISSN 1555-1415. - 16:2(2021), pp. 021006-021014. [10.1115/1.4049080]

Nonlinear dynamics and stability of shallow spherical caps under pressure loading

Iarriccio G.;Pellicano F.
2021

Abstract

The post-buckling and nonlinear dynamic response of shallow spherical caps subjected to external pressure is analyzed. The Novozhilov's nonlinear thin shell theory is used to express the strain-displacement relations. Following the Rayleigh-Ritz method, the displacement fields are expanded using a mixed series: Legendre polynomials in the meridional direction, harmonic functions in the circumferential direction. Once the linear analysis is completed, the displacement fields are re-expanded and the nonlinear dynamic model is obtained by using the Lagrange equations. The response of clamped caps, made of isotropic and homogeneous material, is investigated. The bifurcation analyses of equilibrium points and periodic orbits are presented by using continuation techniques. Benchmark results are provided in terms of natural frequencies and critical buckling loads. The dynamic effects due to the interaction between static and dynamic pressure are investigated. Numerical results pointed out that, under particular load conditions, dynamic bifurcation results in nonnegligible asymmetric states activation in the response of the structure.
16
2
021006
021014
Nonlinear dynamics and stability of shallow spherical caps under pressure loading / Iarriccio, G.; Pellicano, F.. - In: JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. - ISSN 1555-1415. - 16:2(2021), pp. 021006-021014. [10.1115/1.4049080]
Iarriccio, G.; Pellicano, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/1247388
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact