We study the image retrieval problem at the wireless edge, where an edge device captures an image, which is then used to retrieve similar images from an edge server. These can be images of the same person or a vehicle taken from other cameras at different times and locations. Our goal is to maximize the accuracy of the retrieval task under power and bandwidth constraints over the wireless link. Due to the stringent delay constraint of the underlying application, sending the whole image at a sufficient quality is not possible. We propose two alternative schemes based on digital and analog communications, respectively. In the digital approach, we first propose a deep neural network (DNN) aided retrieval-oriented image compression scheme, whose output bit sequence is transmitted over the channel using conventional channel codes. In the analog joint source and channel coding (JSCC) approach, the feature vectors are directly mapped into channel symbols. We evaluate both schemes on image based re-identification (re-ID) tasks under different channel conditions, including both static and fading channels. We show that the JSCC scheme significantly increases the end-to-end accuracy, speeds up the encoding process, and provides graceful degradation with channel conditions. The proposed architecture is evaluated through extensive simulations on different datasets and channel conditions, as well as through ablation studies.

Wireless Image Retrieval at the Edge / Jankowski, M.; Gunduz, D.; Mikolajczyk, K.. - In: IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. - ISSN 0733-8716. - 39:1(2021), pp. 89-100. [10.1109/JSAC.2020.3036955]

Wireless Image Retrieval at the Edge

Gunduz D.;
2021

Abstract

We study the image retrieval problem at the wireless edge, where an edge device captures an image, which is then used to retrieve similar images from an edge server. These can be images of the same person or a vehicle taken from other cameras at different times and locations. Our goal is to maximize the accuracy of the retrieval task under power and bandwidth constraints over the wireless link. Due to the stringent delay constraint of the underlying application, sending the whole image at a sufficient quality is not possible. We propose two alternative schemes based on digital and analog communications, respectively. In the digital approach, we first propose a deep neural network (DNN) aided retrieval-oriented image compression scheme, whose output bit sequence is transmitted over the channel using conventional channel codes. In the analog joint source and channel coding (JSCC) approach, the feature vectors are directly mapped into channel symbols. We evaluate both schemes on image based re-identification (re-ID) tasks under different channel conditions, including both static and fading channels. We show that the JSCC scheme significantly increases the end-to-end accuracy, speeds up the encoding process, and provides graceful degradation with channel conditions. The proposed architecture is evaluated through extensive simulations on different datasets and channel conditions, as well as through ablation studies.
2021
39
1
89
100
Wireless Image Retrieval at the Edge / Jankowski, M.; Gunduz, D.; Mikolajczyk, K.. - In: IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. - ISSN 0733-8716. - 39:1(2021), pp. 89-100. [10.1109/JSAC.2020.3036955]
Jankowski, M.; Gunduz, D.; Mikolajczyk, K.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1247347
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 91
  • ???jsp.display-item.citation.isi??? 72
social impact