In the era of the new generation of communication systems, data traffic is expected to continuously strain the capacity of future communication networks. Along with the remarkable growth in data traffic, new applications, such as wearable devices, autonomous systems, and the Internet of Things (IoT), continue to emerge and generate even more data traffic with vastly different requirements. This growth in the application domain brings forward an inevitable need for more intelligent processing, operation, and optimization of future communication networks.

Series Editorial: Inauguration Issue of the Series on Machine Learning in Communications and Networks / Li, G. Y.; Saad, W.; Ozgur, A.; Kairouz, P.; Qin, Z.; Hoydis, J.; Han, Z.; Gunduz, D.; Elmirghani, J.. - In: IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. - ISSN 0733-8716. - 39:1(2021), pp. 1-3. [10.1109/JSAC.2020.3036785]

Series Editorial: Inauguration Issue of the Series on Machine Learning in Communications and Networks

Gunduz D.;
2021

Abstract

In the era of the new generation of communication systems, data traffic is expected to continuously strain the capacity of future communication networks. Along with the remarkable growth in data traffic, new applications, such as wearable devices, autonomous systems, and the Internet of Things (IoT), continue to emerge and generate even more data traffic with vastly different requirements. This growth in the application domain brings forward an inevitable need for more intelligent processing, operation, and optimization of future communication networks.
2021
39
1
1
3
Series Editorial: Inauguration Issue of the Series on Machine Learning in Communications and Networks / Li, G. Y.; Saad, W.; Ozgur, A.; Kairouz, P.; Qin, Z.; Hoydis, J.; Han, Z.; Gunduz, D.; Elmirghani, J.. - In: IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. - ISSN 0733-8716. - 39:1(2021), pp. 1-3. [10.1109/JSAC.2020.3036785]
Li, G. Y.; Saad, W.; Ozgur, A.; Kairouz, P.; Qin, Z.; Hoydis, J.; Han, Z.; Gunduz, D.; Elmirghani, J.
File in questo prodotto:
File Dimensione Formato  
Series_Editorial_Inauguration_Issue_of_the_Series_on_Machine_Learning_in_Communications_and_Networks.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 50.96 kB
Formato Adobe PDF
50.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1247330
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact