Banknote recognition systems have many applications in the modern world of automatic monetary transaction machines. They are traditionally based on simple classifiers applied over manually selected areas. A new solution in this field, borrowed by content-based image retrieval (CBIR), which is based on dense scale-invariant feature transform features in a bag-of-words framework followed by a support vector machine (SVM) classifier, is explored. The proposed computer vision system for banknote recognition, on one hand, enables recognition at high accuracy and speed, and, on the other hand, provides basis for further applications, e.g., counterfeit detection and fitness test. This approach makes the system robust to various defects, which may occur during image acquisition or during circulation life of banknote. We implemented and tested on an embedded platform three state-of-the-art classification techniques [SVM, artificial neural network (ANN), and hidden Markov model (HMM)]. The comparative results are reported for accuracy with different sizes of the training datasets and with various types of datasets. In this framework, the SVM classifier outperforms ANN and HMM on the basis of speed and accuracy on our embedded platform. © 2013 Society of Photo-Optical Instrumentation Engineers.

On the design of embedded solutions to banknote recognition / Rashid, A.; Prati, A.; Cucchiara, R.. - In: OPTICAL ENGINEERING. - ISSN 0091-3286. - 52:9(2013), pp. 093106-093106. [10.1117/1.OE.52.9.093106]

On the design of embedded solutions to banknote recognition

Rashid A.;Cucchiara R.
2013

Abstract

Banknote recognition systems have many applications in the modern world of automatic monetary transaction machines. They are traditionally based on simple classifiers applied over manually selected areas. A new solution in this field, borrowed by content-based image retrieval (CBIR), which is based on dense scale-invariant feature transform features in a bag-of-words framework followed by a support vector machine (SVM) classifier, is explored. The proposed computer vision system for banknote recognition, on one hand, enables recognition at high accuracy and speed, and, on the other hand, provides basis for further applications, e.g., counterfeit detection and fitness test. This approach makes the system robust to various defects, which may occur during image acquisition or during circulation life of banknote. We implemented and tested on an embedded platform three state-of-the-art classification techniques [SVM, artificial neural network (ANN), and hidden Markov model (HMM)]. The comparative results are reported for accuracy with different sizes of the training datasets and with various types of datasets. In this framework, the SVM classifier outperforms ANN and HMM on the basis of speed and accuracy on our embedded platform. © 2013 Society of Photo-Optical Instrumentation Engineers.
2013
52
9
093106
093106
On the design of embedded solutions to banknote recognition / Rashid, A.; Prati, A.; Cucchiara, R.. - In: OPTICAL ENGINEERING. - ISSN 0091-3286. - 52:9(2013), pp. 093106-093106. [10.1117/1.OE.52.9.093106]
Rashid, A.; Prati, A.; Cucchiara, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1247283
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact