In the optimization of GDI engines, fuel injection plays a crucial role since it can affect the combustion process and, thus, fuel efficiency and pollutant emissions. The challenging task is to obtain the required fuel distribution and atomization inside the combustion chamber over a wide range of engine operating conditions. To achieve such goals, flash-boiling can be exploited. Flash-boiling is a phenomenon occurring when fuel temperature exceeds saturation temperature or, similarly, when ambient pressure is lower than saturation one. Under these conditions, which can occur inside the injector or directly in the combustion chamber, the fuel undergoes extremely accelerated breakup and quickly evaporates. The proposed manuscript shows the application of an alternative flashboiling model, recently implemented by Siemens-PLM in STAR-CD V.2019.1, to be applied in 3D-CFD Lagrangian simulations of GDI sprays. Results are validated against experimental data, provided by the SprayLAB of the University of Perugia, on a single-hole research injector. The new flash-boiling model consists of three main parts: an atomization model able to compute droplet initial conditions and the overall spray cone angle; an evaporation model and, finally, a droplet break-up model; the last two models are designed to simulate all the physical events occurring when droplets are injected into the combustion chamber. As for the investigated operating condition, vessel pressure and temperature are 40 kPa and 293K, respectively; as for the fuel (n-Heptane) temperature, it ranges from 303.15 K to 393.15 K, on equal injection pressure (10 MPa). The numerical-experimental comparison is carried out in terms of liquid penetration, imaging, and droplet sizing.

3D-CFD Simulation of a GDI Injector under Standard and Flashing Conditions / Sparacino, S.; Berni, F.; Riccardi, M.; Cavicchi, A.; Postrioti, L.. - In: E3S WEB OF CONFERENCES. - ISSN 2267-1242. - 197:(2020), p. 06002. (Intervento presentato al convegno 75th National ATI Congress - #7 Clean Energy for all, ATI 2020 tenutosi a ita nel 2020) [10.1051/e3sconf/202019706002].

3D-CFD Simulation of a GDI Injector under Standard and Flashing Conditions

Sparacino S.;Berni F.;Riccardi M.;
2020

Abstract

In the optimization of GDI engines, fuel injection plays a crucial role since it can affect the combustion process and, thus, fuel efficiency and pollutant emissions. The challenging task is to obtain the required fuel distribution and atomization inside the combustion chamber over a wide range of engine operating conditions. To achieve such goals, flash-boiling can be exploited. Flash-boiling is a phenomenon occurring when fuel temperature exceeds saturation temperature or, similarly, when ambient pressure is lower than saturation one. Under these conditions, which can occur inside the injector or directly in the combustion chamber, the fuel undergoes extremely accelerated breakup and quickly evaporates. The proposed manuscript shows the application of an alternative flashboiling model, recently implemented by Siemens-PLM in STAR-CD V.2019.1, to be applied in 3D-CFD Lagrangian simulations of GDI sprays. Results are validated against experimental data, provided by the SprayLAB of the University of Perugia, on a single-hole research injector. The new flash-boiling model consists of three main parts: an atomization model able to compute droplet initial conditions and the overall spray cone angle; an evaporation model and, finally, a droplet break-up model; the last two models are designed to simulate all the physical events occurring when droplets are injected into the combustion chamber. As for the investigated operating condition, vessel pressure and temperature are 40 kPa and 293K, respectively; as for the fuel (n-Heptane) temperature, it ranges from 303.15 K to 393.15 K, on equal injection pressure (10 MPa). The numerical-experimental comparison is carried out in terms of liquid penetration, imaging, and droplet sizing.
2020
75th National ATI Congress - #7 Clean Energy for all, ATI 2020
ita
2020
197
06002
Sparacino, S.; Berni, F.; Riccardi, M.; Cavicchi, A.; Postrioti, L.
3D-CFD Simulation of a GDI Injector under Standard and Flashing Conditions / Sparacino, S.; Berni, F.; Riccardi, M.; Cavicchi, A.; Postrioti, L.. - In: E3S WEB OF CONFERENCES. - ISSN 2267-1242. - 197:(2020), p. 06002. (Intervento presentato al convegno 75th National ATI Congress - #7 Clean Energy for all, ATI 2020 tenutosi a ita nel 2020) [10.1051/e3sconf/202019706002].
File in questo prodotto:
File Dimensione Formato  
e3sconf_ati2020_06002.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1246009
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact