The analysis of truss structures involving geometric and material nonlinearities is often performed by means of numerical approaches. Closed-form solutions of the equilibrium are provided only for simple benchmark problems, under the inconsistent hypothesis of linear constitutive behavior of the material. This hypothesis does not reflect the actual behavior of solids subjected to large deformations. Therefore, in this thesis, a fully nonlinear analytical formulation of the equilibrium and stability of truss structures is presented. The bars of the truss are regarded as hyperelastic bodies composed of a homogeneous, compressible and isotropic material. Both displacement and deformation fields are large, without any restriction. The boundary-value problem is written and the equations governing the equilibrium are derived. The stability of the equilibrium configurations is assessed through an energy criterion. The formulation is firstly obtained for the von Mises (or two-bar) truss, which is the simplest case of truss structure. Despite its apparent simplicity, it exhibits various types of post-critical behaviors, such as snap-through and bifurcation. The formulation is then extended to the three-bar truss, which is an important benchmark test because it shows a number of critical points and stable asymmetric configurations. Several applications to rubber-like materials are performed by assuming a Mooney-Rivlin law for the stored energy function of the bars. The results are of great importance for the validation of finite element simulations and other numerical procedures. The nonlinear formulation for the analysis of truss structures can be applied to the study of the mechanical behavior of nanostructured materials. In particular, this work is focused on the response of graphene subjected to large in-plane deformations. The atoms of the graphene lattice structure are viewed as nodes connected by continuum elements, whose properties are determined through an energy equivalence with the interatomic potential of the chemical bonds. The equilibrium solutions are given for the cases of uniaxial and equibiaxial tensile loads. The results show that graphene is isotropic only for small deformations, while anisotropy arises for large deformations. Multiple and unstable solutions are found after critical values of deformation. Differently from many other studies in literature, the model presented in this work accounts for both geometric and material nonlinearities. This is necessary for an accurate analysis of the mechanical behavior of graphene, because it can easily experience strains larger than 15-20% prior to failure. The results allow therefore to deepen the understanding of the mechanics of deformation of graphene and provide insights into its complex mechanical behavior.

Le strutture reticolari con non linearità geometriche e materiali vengono spesso analizzate mediante approcci numerici. Soluzioni dell’equilibrio in forma chiusa si trovano solamente per casi semplici di riferimento e sotto l’ipotesi di materiale elastico lineare. Tale ipotesi non è consistente con l’effettivo comportamento di solidi reali soggetti a grandi deformazioni. Pertanto, il lavoro di tesi riporta una formulazione analitica interamente non lineare per il problema dell’equilibrio e stabilità di strutture reticolari. Le aste della struttura reticolare sono riguardate come solidi iperelastici di materiale omogeneo, comprimibile e isotropo. I campi di spostamento e deformazione sono considerati grandi, senza alcuna restrizione. Il problema a valori al contorno viene risolto, ricavando così le equazioni che governano l’equilibrio. Di conseguenza, la stabilità delle configurazioni di equilibrio viene studiata attraverso un criterio energetico. La formulazione è dapprima sviluppata per il traliccio di von Mises (arco a tre cerniere), il quale rappresenta il caso più semplice di struttura reticolare. Nonostante la sua apparente semplicità, tale sistema esibisce diversi tipi di comportamento post-critico, tra cui snap-through e biforcazione. La trattazione viene poi estesa al caso della struttura reticolare a tre aste, la quale rappresenta un importante problema di riferimento, poiché mostra diversi punti critici e configurazioni di equilibrio stabili non simmetriche. Si riportano alcune applicazioni della teoria a materiali polimerici, utilizzando il modello di Mooney-Rivlin per l’energia di deformazione elastica delle aste della struttura. I risultati hanno particolare importanza per quanto concerne la validazione di simulazioni agli elementi finiti o di altre procedure numeriche. La trattazione non lineare per l’analisi di strutture reticolari in elasticità finita si applica anche allo studio del comportamento meccanico di materiali nanostrutturali. Nello specifico, in questo lavoro si analizza il grafene soggetto a grandi deformazioni piane. Gli atomi del reticolo cristallino esagonale rappresentano nodi connessi tra loro da elementi strutturali continui, le cui caratteristiche sono determinate attraverso un’equivalenza energetica con il potenziale interatomico dei legami chimici. L’equilibrio viene risolto per i casi di carico uniassiale ed equibiassiale. I risultati del lavoro dimostrano l’isotropia del grafene per piccole deformazioni, proprietà che viene persa per grandi deformazioni dando origine a un comportamento anisotropo. Si osservano inoltre soluzioni multiple e instabili dopo valori critici di deformazione. A differenza di molti altri studi in letteratura, il modello presentato in questo lavoro di tesi tiene conto delle non linearità geometriche e materiali. Ciò è necessario per una modellazione accurata del comportamento meccanico del grafene, in quanto questo materiale può raggiungere deformazioni a rottura superiori a 15-20%. I risultati dello studio permettono quindi di approfondire la comprensione dei meccanismi di deformazione del grafene e del suo complesso comportamento meccanico.

Analisi di strutture reticolari in elasticità finita con applicazione a materiali nanostrutturali / Matteo Pelliciari - : . , 2021 May 18. ((33. ciclo, Anno Accademico 2019/2020.

Analisi di strutture reticolari in elasticità finita con applicazione a materiali nanostrutturali

PELLICIARI, MATTEO
2021-05-18T00:00:00+02:00

Abstract

Le strutture reticolari con non linearità geometriche e materiali vengono spesso analizzate mediante approcci numerici. Soluzioni dell’equilibrio in forma chiusa si trovano solamente per casi semplici di riferimento e sotto l’ipotesi di materiale elastico lineare. Tale ipotesi non è consistente con l’effettivo comportamento di solidi reali soggetti a grandi deformazioni. Pertanto, il lavoro di tesi riporta una formulazione analitica interamente non lineare per il problema dell’equilibrio e stabilità di strutture reticolari. Le aste della struttura reticolare sono riguardate come solidi iperelastici di materiale omogeneo, comprimibile e isotropo. I campi di spostamento e deformazione sono considerati grandi, senza alcuna restrizione. Il problema a valori al contorno viene risolto, ricavando così le equazioni che governano l’equilibrio. Di conseguenza, la stabilità delle configurazioni di equilibrio viene studiata attraverso un criterio energetico. La formulazione è dapprima sviluppata per il traliccio di von Mises (arco a tre cerniere), il quale rappresenta il caso più semplice di struttura reticolare. Nonostante la sua apparente semplicità, tale sistema esibisce diversi tipi di comportamento post-critico, tra cui snap-through e biforcazione. La trattazione viene poi estesa al caso della struttura reticolare a tre aste, la quale rappresenta un importante problema di riferimento, poiché mostra diversi punti critici e configurazioni di equilibrio stabili non simmetriche. Si riportano alcune applicazioni della teoria a materiali polimerici, utilizzando il modello di Mooney-Rivlin per l’energia di deformazione elastica delle aste della struttura. I risultati hanno particolare importanza per quanto concerne la validazione di simulazioni agli elementi finiti o di altre procedure numeriche. La trattazione non lineare per l’analisi di strutture reticolari in elasticità finita si applica anche allo studio del comportamento meccanico di materiali nanostrutturali. Nello specifico, in questo lavoro si analizza il grafene soggetto a grandi deformazioni piane. Gli atomi del reticolo cristallino esagonale rappresentano nodi connessi tra loro da elementi strutturali continui, le cui caratteristiche sono determinate attraverso un’equivalenza energetica con il potenziale interatomico dei legami chimici. L’equilibrio viene risolto per i casi di carico uniassiale ed equibiassiale. I risultati del lavoro dimostrano l’isotropia del grafene per piccole deformazioni, proprietà che viene persa per grandi deformazioni dando origine a un comportamento anisotropo. Si osservano inoltre soluzioni multiple e instabili dopo valori critici di deformazione. A differenza di molti altri studi in letteratura, il modello presentato in questo lavoro di tesi tiene conto delle non linearità geometriche e materiali. Ciò è necessario per una modellazione accurata del comportamento meccanico del grafene, in quanto questo materiale può raggiungere deformazioni a rottura superiori a 15-20%. I risultati dello studio permettono quindi di approfondire la comprensione dei meccanismi di deformazione del grafene e del suo complesso comportamento meccanico.
Analysis of truss structures in finite elasticity with application to nanostructured materials
TARANTINO, Angelo Marcello
BRISEGHELLA, BRUNO
File in questo prodotto:
File Dimensione Formato  
Tesi_Pelliciari_Review_Full.pdf

embargo fino al 18/05/2022

Descrizione: Tesi definitiva Pelliciari Matteo
Tipologia: Tesi di dottorato
Dimensione 38.65 MB
Formato Adobe PDF
38.65 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/1245938
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact