Clustering methods are increasingly applied to single-cell DNA sequencing (scDNAseq) data to infer the subclonal structure of cancer. However, the complexity of these data exacerbates some data-science issues and affects clustering results. Additionally, determining whether such inferences are accurate and clusters recapitulate the real cell phylogeny is not trivial, mainly because ground truth information is not available for most experimental settings. Here, by exploiting simulated sequencing data representing known phylogenies of cancer cells, we propose a formal and systematic assessment of well-known clustering methods to study their performance and identify the approach providing the most accurate reconstruction of phylogenetic relationships.

Effective evaluation of clustering algorithms on single-cell CNA data / Montemurro, Marilisa; Urgese, Gianvito; Grassi, Elena; Pizzino, Carmelo Gabriele; Bertotti, Andrea; Ficarra, Elisa. - (2020), pp. 5-11. (Intervento presentato al convegno 7th International Conference on Biomedical and Bioinformatics Engineering, ICBBE 2020 tenutosi a Kyoto nel 06-09 novembre 2020) [10.1145/3444884.3444886].

Effective evaluation of clustering algorithms on single-cell CNA data

Ficarra, Elisa
2020

Abstract

Clustering methods are increasingly applied to single-cell DNA sequencing (scDNAseq) data to infer the subclonal structure of cancer. However, the complexity of these data exacerbates some data-science issues and affects clustering results. Additionally, determining whether such inferences are accurate and clusters recapitulate the real cell phylogeny is not trivial, mainly because ground truth information is not available for most experimental settings. Here, by exploiting simulated sequencing data representing known phylogenies of cancer cells, we propose a formal and systematic assessment of well-known clustering methods to study their performance and identify the approach providing the most accurate reconstruction of phylogenetic relationships.
2020
7th International Conference on Biomedical and Bioinformatics Engineering, ICBBE 2020
Kyoto
06-09 novembre 2020
5
11
Montemurro, Marilisa; Urgese, Gianvito; Grassi, Elena; Pizzino, Carmelo Gabriele; Bertotti, Andrea; Ficarra, Elisa
Effective evaluation of clustering algorithms on single-cell CNA data / Montemurro, Marilisa; Urgese, Gianvito; Grassi, Elena; Pizzino, Carmelo Gabriele; Bertotti, Andrea; Ficarra, Elisa. - (2020), pp. 5-11. (Intervento presentato al convegno 7th International Conference on Biomedical and Bioinformatics Engineering, ICBBE 2020 tenutosi a Kyoto nel 06-09 novembre 2020) [10.1145/3444884.3444886].
File in questo prodotto:
File Dimensione Formato  
ICBBE2020.pdf

Accesso riservato

Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1240396
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact