Predicting the oncogenic potential of a gene fusion transcript is an important and challenging task in the study of cancer development. To this date, the available approaches mostly rely on protein domain analysis to provide a probability score explaining the oncogenic potential of a gene fusion. In this paper, a Convolutional Neural Network model is proposed to discriminate gene fusions into oncogenic or non-oncogenic, exploiting only the protein sequence without protein domain information. Our proposed model obtained accuracy value close to 90% on a dataset of fused sequences.

Predicting the oncogenic potential of a gene fusion transcript is an important and challenging task in the study of cancer development. To this date, the available approaches mostly rely on protein domain analysis to provide a probability score explaining the oncogenic potential of a gene fusion. In this paper, a Convolutional Neural Network model is proposed to discriminate gene fusions into oncogenic or non-oncogenic, exploiting only the protein sequence without protein domain information. Our proposed model obtained accuracy value close to 90% on a dataset of fused sequences.

Predicting the oncogenic potential of gene fusions using convolutional neural networks / Lovino, Marta; Gianvito, Urgese; Enrico, Macii; Santa Di Cataldo, ; Ficarra, Elisa. - 11925:(2020), pp. 277-284. (Intervento presentato al convegno 15th International Conference on Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2018 tenutosi a Caparica nel 6 - 8 September 2018) [10.1007/978-3-030-34585-3_24].

Predicting the oncogenic potential of gene fusions using convolutional neural networks

LOVINO, MARTA;Elisa Ficarra
2020

Abstract

Predicting the oncogenic potential of a gene fusion transcript is an important and challenging task in the study of cancer development. To this date, the available approaches mostly rely on protein domain analysis to provide a probability score explaining the oncogenic potential of a gene fusion. In this paper, a Convolutional Neural Network model is proposed to discriminate gene fusions into oncogenic or non-oncogenic, exploiting only the protein sequence without protein domain information. Our proposed model obtained accuracy value close to 90% on a dataset of fused sequences.
2020
15th International Conference on Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2018
Caparica
6 - 8 September 2018
11925
277
284
Lovino, Marta; Gianvito, Urgese; Enrico, Macii; Santa Di Cataldo, ; Ficarra, Elisa
Predicting the oncogenic potential of gene fusions using convolutional neural networks / Lovino, Marta; Gianvito, Urgese; Enrico, Macii; Santa Di Cataldo, ; Ficarra, Elisa. - 11925:(2020), pp. 277-284. (Intervento presentato al convegno 15th International Conference on Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2018 tenutosi a Caparica nel 6 - 8 September 2018) [10.1007/978-3-030-34585-3_24].
File in questo prodotto:
File Dimensione Formato  
10.1007_978-3-030-34585-3.pdf

Accesso riservato

Descrizione: Author's pesonal copy
Tipologia: Versione pubblicata dall'editore
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1240327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact