The early diagnosis of colorectal cancer (CRC) traditionally leverages upon the microscopic examination of histological slides by experienced pathologists, which is very time-consuming and rises many issues about the reliability of the results. In this paper we propose using Convolutional Neural Networks (CNNs), a class of deep networks that are successfully used in many contexts of pattern recognition, to automatically distinguish the cancerous tissues from either healthy or benign lesions. For this purpose, we designed and compared different CNN-based classification frameworks, involving either training CNNs from scratch on three classes of colorectal images, or transfer learning from a different classification problem. While a CNN trained from scratch obtained very good (about 90%) classification accuracy in our tests, the same CNN model pre-trained on the ImageNet dataset obtained even better accuracy (around 96%) on the same testing samples, requiring much lesser computational resources.
Going Deeper into Colorectal Cancer Histopathology / Ponzio, Francesco; Macii, Enrico; Ficarra, Elisa; Di Cataldo, Santa. - 1024:(2019), pp. 114-131. [10.1007/978-3-030-29196-9_7]
Going Deeper into Colorectal Cancer Histopathology
Ficarra Elisa;
2019
Abstract
The early diagnosis of colorectal cancer (CRC) traditionally leverages upon the microscopic examination of histological slides by experienced pathologists, which is very time-consuming and rises many issues about the reliability of the results. In this paper we propose using Convolutional Neural Networks (CNNs), a class of deep networks that are successfully used in many contexts of pattern recognition, to automatically distinguish the cancerous tissues from either healthy or benign lesions. For this purpose, we designed and compared different CNN-based classification frameworks, involving either training CNNs from scratch on three classes of colorectal images, or transfer learning from a different classification problem. While a CNN trained from scratch obtained very good (about 90%) classification accuracy in our tests, the same CNN model pre-trained on the ImageNet dataset obtained even better accuracy (around 96%) on the same testing samples, requiring much lesser computational resources.File | Dimensione | Formato | |
---|---|---|---|
Biostec2018_SPRINGER (1)-compresso.pdf
Accesso riservato
Dimensione
495.22 kB
Formato
Adobe PDF
|
495.22 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
10.1007_978-3-030-29196-9_selected.pdf
Accesso riservato
Dimensione
6.35 MB
Formato
Adobe PDF
|
6.35 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris