The context of this Ph.D. is the data analysis and management for gamma-ray astronomy, which involves the observation of gamma-rays, the most energetic form of electromagnetic radiation. From the gamma-ray observations performed by telescopes or satellites, it is possible to study catastrophic events involving compact objects, such as white dwarves, neutron stars, and black holes. These events are called gamma-ray transients. To understand these phenomena, they must be observed during their evolution. For this reason, the speed is crucial, and automated data analysis pipelines are developed to detect gamma-ray transients and generate science alerts during the astrophysical observations or immediately after. A science alert is an immediate communication from one observatory to other observatories that an interesting astrophysical event is occurring in the sky. The astrophysical community is experiencing a new era called "multi-messenger astronomy", where the astronomical sources are observed by different instruments, collecting different signals: gravitational waves, electromagnetic radiation, and neutrinos. In the multi-messenger era, astrophysical projects share science alerts through different communication networks. The coordination of different projects done by sharing science alerts is mandatory to understand the nature of these physical phenomena. Observatories have to manage the follow-up of these external science alerts by developing dedicated software. During this Ph. D., the research activity had the main focus on the AGILE space mission, currently in operation, and on the Cherenkov Telescope Array Observatory (CTA), currently in the construction phase. The follow-up of external science alerts received from Gamma-Ray Bursts (GRB) and Gravitational Waves (GW) detectors is one of the AGILE Team's current major activities. Future generations of gamma-ray observatories like the CTA or the ASTRI Mini-Array can take advantage of the technologies developed for AGILE. This research aims to develop analysis and management software for gamma-ray data to fulfill the context requirements. The first chapter of this thesis describes the web platform used by AGILE researchers to prepare the Second AGILE Catalog of Gamma-ray sources. The analysis performed for this catalog is stored in a dedicated database, and the web platform queries this database. This was preparatory work to understand how to manage detections of gamma-ray sources and light curve for the subsequent phase: the development of a scientific pipeline to manage gamma-ray detection and science alerts in real-time. The second chapter presents a framework designed to facilitate the development of real-time scientific analysis pipelines. The framework provides a common pipeline architecture and automatisms that can be used by observatories to develop their own pipelines. This framework was used to develop the pipelines for the AGILE space mission and to develop a prototype of the scientific pipeline of the Science Alert Generation system of the CTA Observatory. The third chapter describes a new method to detect GRBs in the AGILE-GRID data using the Convolutional Neural Network. With this Deep Learning technology, it is possible to improve the detection capabilities of AGILE. This method was also integrated as a science tool in the AGILE pipelines. The last chapter of the thesis shows the scientific results obtained with the software developed during the Ph.D. research activities. Part of the results was published in refereed journals. The remaining part was sent to the scientific community through The Astronomer's Telegram or the Gamma-ray Coordination Network.
Il contesto delle attività svolte per il Ph.D. sono l’analisi e la gestione dei dati per l’astronomia dei raggi gamma, la quale coinvolge l’osservazione dei raggi gamma, la forma più energetica di radiazione elettromagnetica. Dalle osservazioni dei raggi gamma effettuate con telescopi o satelliti, è possibile studiare eventi catastrofici generati da oggetti compatti come nane bianche, stelle di neutroni e buchi neri. Questi eventi sono chiamati transienti di raggi gamma. Per comprendere questi fenomeni, essi devono essere osservati durante la loro evoluzione. Per questa ragione, la velocità è cruciale e vengono sviluppate pipeline automatiche di analisi dei dati per identificare questi transienti e generare allerte scientifiche. L’allerta scientifica è una comunicazione immediata da un osservatorio ad altri osservatori per segnalare che un evento astrofisico interessante sta avvenendo nel cielo. La comunità astrofisica si trova in una nuova era chiamata “multi-messenger astronomy”, nella quale le sorgenti astronomiche sono osservate con strumenti che raccolgono diversi segnali: onde gravitazionali, radiazioni elettromagnetiche e neutrini. In questa multi-messenger era, i progetti astrofisici condividono le loro allerte scientifiche tramite reti di comunicazione. Il coordinamento di diversi progetti tramite le allerte scientifiche è fondamentale per capire la natura di questi fenomeni fisici. Gli osservatori devono gestire queste allerte scientifiche sviluppando software dedicato. Durante il corso del Ph.D. l’attività di ricerca è stata focalizzata sulla missione spaziale AGILE, attualmente in operazione, e sull’osservatorio Cherenkov Telescope Array, in fase di costruzione. Il follow-up di allerte scientifiche esterne ricevute dagli strumenti che identificano Gamma-Ray Bursts (GRB) e Gravitational Waves (GW) è una delle maggiori attività del Team di AGILE. Le generazioni future degli osservatori di raggi gamma come CTA o ASTRI Mini-Array possono trarre vantaggio dalle tecnologie sviluppate per AGILE. Questa ricerca ha l’obiettivo di sviluppare software per l’analisi e la gestione dei dati gamma. Il primo capitolo della tesi descrive la piattaforma web utilizzata dai ricercatori AGILE per preparare il secondo catalogo di sorgenti gamma di AGILE. Le analisi realizzate per questo catalogo sono memorizzate in un database dedicato e la piattaforma web interroga il database. Questo è stato il lavoro preparatorio per capire come gestire i risultati delle analisi di sorgenti gamma (detection e curve di luce) per la fase successiva: lo sviluppo di una pipeline scientifica per gestire in tempo reale le detection e le allerte scientifiche. Nel secondo capitolo viene presentato un framework progettato per facilitare lo sviluppo di pipeline per l’analisi scientifica in tempo reale. Il framework offre un’architettura comune e automatismi che possono essere utilizzati dagli osservatori per sviluppare le loro pipeline. Questo framework è stato usato per sviluppare le pipeline della missione spaziale AGILE e per sviluppare un prototipo per la Science Alert Generation (SAG) dell’osservatorio CTA. Il terzo capitolo descrive un nuovo metodo per identificare i GRB nei dati dello strumento AGILE-GRID utilizzando le Convolutional Neural Network. Con questa tecnologia Deep Learning è possibile migliorare la capacità di detection di AGILE. Questo metodo è anche stato inserito come tool scientifico all’interno della pipeline AGILE. L’ultimo capitolo mostra i risultati scientifici ottenuti con il software sviluppato durante le attività di ricerca del Ph.D. Parte dei risultati sono stati pubblicati su riviste scientifiche. La restante parte è stata inviata alla comunità scientifica tramite The Astronomer’s Telegram o il Gamma-ray Coordination Network.
Metodi per l’analisi e la gestione dei dati dell’astrofisica gamma in tempo reale / Nicolò Parmiggiani , 2021 Mar 23. 33. ciclo, Anno Accademico 2019/2020.
Metodi per l’analisi e la gestione dei dati dell’astrofisica gamma in tempo reale.
PARMIGGIANI, Nicolò
2021
Abstract
The context of this Ph.D. is the data analysis and management for gamma-ray astronomy, which involves the observation of gamma-rays, the most energetic form of electromagnetic radiation. From the gamma-ray observations performed by telescopes or satellites, it is possible to study catastrophic events involving compact objects, such as white dwarves, neutron stars, and black holes. These events are called gamma-ray transients. To understand these phenomena, they must be observed during their evolution. For this reason, the speed is crucial, and automated data analysis pipelines are developed to detect gamma-ray transients and generate science alerts during the astrophysical observations or immediately after. A science alert is an immediate communication from one observatory to other observatories that an interesting astrophysical event is occurring in the sky. The astrophysical community is experiencing a new era called "multi-messenger astronomy", where the astronomical sources are observed by different instruments, collecting different signals: gravitational waves, electromagnetic radiation, and neutrinos. In the multi-messenger era, astrophysical projects share science alerts through different communication networks. The coordination of different projects done by sharing science alerts is mandatory to understand the nature of these physical phenomena. Observatories have to manage the follow-up of these external science alerts by developing dedicated software. During this Ph. D., the research activity had the main focus on the AGILE space mission, currently in operation, and on the Cherenkov Telescope Array Observatory (CTA), currently in the construction phase. The follow-up of external science alerts received from Gamma-Ray Bursts (GRB) and Gravitational Waves (GW) detectors is one of the AGILE Team's current major activities. Future generations of gamma-ray observatories like the CTA or the ASTRI Mini-Array can take advantage of the technologies developed for AGILE. This research aims to develop analysis and management software for gamma-ray data to fulfill the context requirements. The first chapter of this thesis describes the web platform used by AGILE researchers to prepare the Second AGILE Catalog of Gamma-ray sources. The analysis performed for this catalog is stored in a dedicated database, and the web platform queries this database. This was preparatory work to understand how to manage detections of gamma-ray sources and light curve for the subsequent phase: the development of a scientific pipeline to manage gamma-ray detection and science alerts in real-time. The second chapter presents a framework designed to facilitate the development of real-time scientific analysis pipelines. The framework provides a common pipeline architecture and automatisms that can be used by observatories to develop their own pipelines. This framework was used to develop the pipelines for the AGILE space mission and to develop a prototype of the scientific pipeline of the Science Alert Generation system of the CTA Observatory. The third chapter describes a new method to detect GRBs in the AGILE-GRID data using the Convolutional Neural Network. With this Deep Learning technology, it is possible to improve the detection capabilities of AGILE. This method was also integrated as a science tool in the AGILE pipelines. The last chapter of the thesis shows the scientific results obtained with the software developed during the Ph.D. research activities. Part of the results was published in refereed journals. The remaining part was sent to the scientific community through The Astronomer's Telegram or the Gamma-ray Coordination Network.File | Dimensione | Formato | |
---|---|---|---|
ParmiggianiNicoloPhDThesis2021_reviewed.pdf
Open access
Descrizione: Tesi definitiva Parmiggiani Nicolò
Tipologia:
Tesi di dottorato
Dimensione
3.9 MB
Formato
Adobe PDF
|
3.9 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris