HSPB3 is a small heat shock protein found predominantly in muscle cells. In contrast to other HSPBs, it is not upregulated upon heat-shock and it does not confer thermotolerance. In human myoblasts, HSPB3 is induced upon differentiation under the control of the myogenic regulatory factor MyoD. Yet whether HSPB3 plays a role in myogenic differentiation is unknown. The focus of this thesis was to assess whether HSPB3 participates in myogenic differentiation. Cell cycle exit and commitment to differentiation are regulated at the transcriptional level and require extensive chromatin remodeling. This process is modulated by the downregulation of Lamin B Receptor (LBR) and its detachment from chromatin and the nuclear envelope (NE). Immunofluorescence studies show that HSPB3 is enriched at the NE. This observation prompted the hypothesis that HSPB3 could act at the nuclear level facilitating the chromatin remodeling during muscle differentiation. Expression analysis and study of the subcellular localization of LBR in human myoblasts demonstrated that an interplay exists between HSPB3 and LBR. In particular, HSPB3 levels inversely correlate with LBR. Moreover, we demonstrate that HSPB3 directly interacts with LBR and promotes its relocalization into the nucleoplasm. Although we cannot exclude the possibility that, besides LBR, HSPB3 might also interact with other NE-associated proteins, our data clearly show that HSPB3 influences NE and chromatin remodeling, ultimately promoting the expression of pro-differentiating genes. In agreement, transcriptomic analysis links HSPB3 to changes in the expression of genes involved in extracellular matrix organization and skeletal muscle development. From the 4 identified mutations linked to neuromuscular pathologies, transcriptomic analysis evidences a loss of myogenic-specific gene activation by R116P and R7S, and an unexpected induction of the UPR (Unfolded Protein Response) due to R116P. These results open the possibility that mutations may decrease the differentiation capacity and regenerative potential of muscles. HSPB3 expression has also been detected in neuronal populations, but no physiological role has been identified so far. The best characterized function of HSPBs are the chaperone activity and prevention of irreversible aggregation. In vitro studies aimed at characterizing the chaperone activity of HSPB3 have demonstrated its ability to inhibit α-synuclein aggregation. In particular, the interaction between α-synuclein and lipid surfaces has been shown to trigger its conversion from a soluble state into the aggregated stated, associated to the development of Parkinson’s disease. Of note, several HSPBs have been shown to interact with lipids but this function has not yet been linked to their anti-aggregation functions. The work presented in the first chapter indicates that HSPB3 affects LBR insertion into the NE opening the possibility that HSPB3 might interfere with protein-lipid binding. In the second chapter of this thesis, we sought to investigate whether HSPB3, and other better characterized HSPBs (HSPB5, HSPB6, HSPB7 and HSPB8) affect α-synuclein interaction with lipids and aggregation. Using a three-pronged approach developed in the laboratory of Prof. M. Vendruscolo, we find that all HSPBs studied have an impact on α-synuclein lipid-induced aggregation, elongation, and secondary nucleation. More specifically, HSPBs could bind α-synuclein in its monomeric, oligomeric and fibrillar forms, as well as to the lipid membranes themselves. In summary, our findings pave the way for a better understanding of HSPB3 implication in the physiology and pathology of the neuromuscular system.

HSPB3 è una proteina da shock termico espressa prevalentemente nelle cellule muscolari. A differenza di altri membri della famiglia delle HSPB, HSPB3 non è indotto da shock termico e non conferisce termotolleranza. Nei mioblasti umani, HSPB3 è indotta durante il differenziamento sotto il controllo del fattore regolatore miogenico MyoD. Tuttavia, non è noto se HSPB3 partecipi al differenziamento miogenico, quesito oggetto di questa tesi. L'uscita dal ciclo cellulare e l’inizio del differenziamento sono regolati a livello trascrizionale e richiedono un rimodellamento della cromatina. Questo processo è modulato dalla sottoregolazione del recettore della Lamina B (LBR) e dal suo distacco dalla cromatina e dall'involucro nucleare (NE). Studi di immunofluorescenza mostrano un arricchimento di HSPB3 al NE. Questa osservazione ha suggerito l'ipotesi che HSPB3 possa agire a livello nucleare facilitando il rimodellamento della cromatina durante il differenziamento. L'analisi dell'espressione e lo studio della localizzazione subcellulare di LBR nei mioblasti dimostrano che esiste una connessione tra HSPB3 e LBR. In particolare, i livelli di mRNA di HSPB3 sono inversamente correlati a quelli di LBR. Inoltre, HSPB3 interagisce direttamente con LBR e promuove la sua rilocalizzazione nel nucleoplasma. Sebbene non possiamo escludere la possibilità che, oltre a LBR, HSPB3 possa interagire con altre proteine associate al NE, i nostri dati dimostrano che HSPB3 agisce sul rimodellamento di NE e cromatina, promuovendo l'espressione di geni specifici per il differenziamento. In accordo, l'analisi trascrittomica rivela la capacità di HSPB3 di modulare l'espressione dei geni coinvolti nell'organizzazione della matrice extracellulare e nello sviluppo del muscolo scheletrico. Dei 4 mutanti di HSPB3 associati a malattie neuromuscolari, l’analisi trascrittomica dimostra l’incapacità di R116P e R7S di modulare l’espressione genica come la forma wildtype, suggerendo che le mutazioni diminuirebbero la capacità di differenziamento e il potenziale rigenerativo dei muscoli. L'espressione di HSPB3 è stata rilevata anche in popolazioni neuronali, ma finora non è stato identificato alcun ruolo fisiologico. Una delle funzioni delli HSPB è rappresentata dall'attività di chaperone e dalla prevenzione dell'aggregazione irreversibile di svariati substrati. Studi in vitro volti a caratterizzare l'attività chaperone di HSPB3 hanno dimostrato che essa inibisce l'aggregazione dell'α-sinucleina. In particolare, l'interazione tra l'α-sinucleina e le superfici lipidiche innesca la sua conversione da uno stato solubile a uno stato aggregato, processo che contribuisce allo sviluppo della malattia di Parkinson. Siccome è noto che diverse HSPB interagiscono con i lipidi e nel primo capitolo di questo lavoro è stato dimostrato che HSPB3 influenza l'inserimento di LBR nel NE, ci siamo chiesti se HSPB3 possa interferire con il legame proteine-lipidi. Nel secondo capitolo, abbiamo cercato di indagare se HSPB3 e altre HSPB meglio caratterizzate (HSPB5, HSPB6, HSPB7 e HSPB8) influenzano l'aggregazione dell'α-sinucleina e l'interazione con i lipidi. Utilizzando un metodo sviluppato nel laboratorio del Prof. M. Vendruscolo, abbbiamo dimostrato che tutti le HSPB studiate riducono l'aggregazione dell'α-sinucleina indotta dai lipidi, il prolungamento delle fibrille e la nucleazione secondaria. Più specificamente, le HSPB legano l'α-sinucleina nelle sue forme monomerica, oligomerica, fibrillare, nonché le membrane lipidiche. In sintesi, i nostri risultati aprono la strada ad una migliore comprensione dell'implicazione di HSPB3 nella fisiopatologia del sistema neuromuscolare.

Studio delle funzioni fisiologiche e delle implicazioni patologiche di HSPB3, il membro più deviante della famiglia delle HSPB / Tatiana Sofia Pinheiro Tiago , 2021 Mar 25. 33. ciclo, Anno Accademico 2019/2020.

Studio delle funzioni fisiologiche e delle implicazioni patologiche di HSPB3, il membro più deviante della famiglia delle HSPB.

PINHEIRO TIAGO, TATIANA SOFIA
2021

Abstract

HSPB3 is a small heat shock protein found predominantly in muscle cells. In contrast to other HSPBs, it is not upregulated upon heat-shock and it does not confer thermotolerance. In human myoblasts, HSPB3 is induced upon differentiation under the control of the myogenic regulatory factor MyoD. Yet whether HSPB3 plays a role in myogenic differentiation is unknown. The focus of this thesis was to assess whether HSPB3 participates in myogenic differentiation. Cell cycle exit and commitment to differentiation are regulated at the transcriptional level and require extensive chromatin remodeling. This process is modulated by the downregulation of Lamin B Receptor (LBR) and its detachment from chromatin and the nuclear envelope (NE). Immunofluorescence studies show that HSPB3 is enriched at the NE. This observation prompted the hypothesis that HSPB3 could act at the nuclear level facilitating the chromatin remodeling during muscle differentiation. Expression analysis and study of the subcellular localization of LBR in human myoblasts demonstrated that an interplay exists between HSPB3 and LBR. In particular, HSPB3 levels inversely correlate with LBR. Moreover, we demonstrate that HSPB3 directly interacts with LBR and promotes its relocalization into the nucleoplasm. Although we cannot exclude the possibility that, besides LBR, HSPB3 might also interact with other NE-associated proteins, our data clearly show that HSPB3 influences NE and chromatin remodeling, ultimately promoting the expression of pro-differentiating genes. In agreement, transcriptomic analysis links HSPB3 to changes in the expression of genes involved in extracellular matrix organization and skeletal muscle development. From the 4 identified mutations linked to neuromuscular pathologies, transcriptomic analysis evidences a loss of myogenic-specific gene activation by R116P and R7S, and an unexpected induction of the UPR (Unfolded Protein Response) due to R116P. These results open the possibility that mutations may decrease the differentiation capacity and regenerative potential of muscles. HSPB3 expression has also been detected in neuronal populations, but no physiological role has been identified so far. The best characterized function of HSPBs are the chaperone activity and prevention of irreversible aggregation. In vitro studies aimed at characterizing the chaperone activity of HSPB3 have demonstrated its ability to inhibit α-synuclein aggregation. In particular, the interaction between α-synuclein and lipid surfaces has been shown to trigger its conversion from a soluble state into the aggregated stated, associated to the development of Parkinson’s disease. Of note, several HSPBs have been shown to interact with lipids but this function has not yet been linked to their anti-aggregation functions. The work presented in the first chapter indicates that HSPB3 affects LBR insertion into the NE opening the possibility that HSPB3 might interfere with protein-lipid binding. In the second chapter of this thesis, we sought to investigate whether HSPB3, and other better characterized HSPBs (HSPB5, HSPB6, HSPB7 and HSPB8) affect α-synuclein interaction with lipids and aggregation. Using a three-pronged approach developed in the laboratory of Prof. M. Vendruscolo, we find that all HSPBs studied have an impact on α-synuclein lipid-induced aggregation, elongation, and secondary nucleation. More specifically, HSPBs could bind α-synuclein in its monomeric, oligomeric and fibrillar forms, as well as to the lipid membranes themselves. In summary, our findings pave the way for a better understanding of HSPB3 implication in the physiology and pathology of the neuromuscular system.
Unraveling the physiological functions and pathological implications of HSPB3, the most deviating member of the HSPB family.
25-mar-2021
CARRA, Serena
File in questo prodotto:
File Dimensione Formato  
Pinheiro_Tiago_Neuroscience_XXXIII_Thesis.pdf

Open Access dal 25/03/2024

Descrizione: Tesi definitiva Pinheiro Tiago Tatiana Sofia
Tipologia: Tesi di dottorato
Dimensione 5.73 MB
Formato Adobe PDF
5.73 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1239495
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact