The authors have formerly published the analytical model and finite element validation of a push-pull actuator made by winding a thin shape memory wire on a solid rubber cylinder. The cylinder provides elastic backup for the wire upon cooling down and transforms its circumferential contraction into a magnified axial elongation upon heating up. Building on that study, this paper accomplishes three tasks: (1) build prototype actuators and perform simple tests to validate the theory; (2) develop simple procedures for the optimal design of the actuator starting from high-level engineering specifications; (3) envision how the present concept could be improved by replacing the rubber block with a compliant lattice-like or shell-like scaffold with designed properties to further enhance the axial stroke.
Validation and optimization of a compact push-pull rubber actuator energized by an outer coil of shape memory wire / Dragoni, E.; Mammano, G. S.. - In: PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS. PART L, JOURNAL OF MATERIALS, DESIGN AND APPLICATIONS.. - ISSN 1464-4207. - 235:3(2021), pp. 625-639. [10.1177/1464420720974410]
Validation and optimization of a compact push-pull rubber actuator energized by an outer coil of shape memory wire
Dragoni E.
;
2021
Abstract
The authors have formerly published the analytical model and finite element validation of a push-pull actuator made by winding a thin shape memory wire on a solid rubber cylinder. The cylinder provides elastic backup for the wire upon cooling down and transforms its circumferential contraction into a magnified axial elongation upon heating up. Building on that study, this paper accomplishes three tasks: (1) build prototype actuators and perform simple tests to validate the theory; (2) develop simple procedures for the optimal design of the actuator starting from high-level engineering specifications; (3) envision how the present concept could be improved by replacing the rubber block with a compliant lattice-like or shell-like scaffold with designed properties to further enhance the axial stroke.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris