The general effects of implementing skewing techniques in electrical machines are well known and have been extensively studied over the years. An important aspect of such techniques is related to the identification of optimal methods for analyzing and modeling any skewed components. This paper presents a fast, finite-element-based method, able to accurately analyze the effects of skew on wound-field, salient-pole synchronous generators in a relatively shorter time than the more traditional methods. As a vessel for studying the proposed technique, a 400 kVA alternator is considered. Analytical and theoretical considerations on the benefits of skewing the stator in the generator under analysis are preliminary carried out. A finite-element model of the machine is built and the proposed method is then implemented to investigate the effects of the skewed stator. Comparisons against more traditional techniques are presented, with focus on the analysis of the voltage total harmonic distortion and the damper bars' currents. Finally, experimental tests are performed at no-load and on-load operations for validation purposes, with excellent results being achieved.

A Fast Method for Modeling Skew and Its Effects in Salient-Pole Synchronous Generators / Nuzzo, S.; Galea, M.; Gerada, C.; Brown, N.. - In: IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS. - ISSN 0278-0046. - 64:10(2017), pp. 7679-7688. [10.1109/TIE.2017.2694378]

A Fast Method for Modeling Skew and Its Effects in Salient-Pole Synchronous Generators

Nuzzo S.;
2017

Abstract

The general effects of implementing skewing techniques in electrical machines are well known and have been extensively studied over the years. An important aspect of such techniques is related to the identification of optimal methods for analyzing and modeling any skewed components. This paper presents a fast, finite-element-based method, able to accurately analyze the effects of skew on wound-field, salient-pole synchronous generators in a relatively shorter time than the more traditional methods. As a vessel for studying the proposed technique, a 400 kVA alternator is considered. Analytical and theoretical considerations on the benefits of skewing the stator in the generator under analysis are preliminary carried out. A finite-element model of the machine is built and the proposed method is then implemented to investigate the effects of the skewed stator. Comparisons against more traditional techniques are presented, with focus on the analysis of the voltage total harmonic distortion and the damper bars' currents. Finally, experimental tests are performed at no-load and on-load operations for validation purposes, with excellent results being achieved.
2017
64
10
7679
7688
A Fast Method for Modeling Skew and Its Effects in Salient-Pole Synchronous Generators / Nuzzo, S.; Galea, M.; Gerada, C.; Brown, N.. - In: IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS. - ISSN 0278-0046. - 64:10(2017), pp. 7679-7688. [10.1109/TIE.2017.2694378]
Nuzzo, S.; Galea, M.; Gerada, C.; Brown, N.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1237584
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 17
social impact