The traditional generating set is usually comprised of a classical, wound-field, salient-pole, or cylindrical rotor synchronous generator, excited by a separate smaller machine, via a rotating, uncontrolled diode rectifier. The effects of the commutation processes of the diode bridge are often overlooked and neglected. However, due to the uncontrolled nature of this process, the rectified voltage available at the main generator's rotor terminals can be significantly lower than the expected value. This is especially true for low-to-medium power rated systems. In this paper, a detailed investigation of these aspects is done and an accurate voltage drop prediction model is then proposed. The model is validated with finite-element analysis and with experimental results for a particular low-medium rated generating system in the 400 kVA power range. The validated tool is then integrated into an innovative design tool, which first performs an analytical presizing procedure and then utilizes a genetic algorithm approach to identify an optimal excitation system design, aimed at minimizing the voltage drop ensuing from the diode commutations, with minimum impact on the overall efficiency.

Analysis, Modeling, and Design Considerations for the Excitation Systems of Synchronous Generators / Nuzzo, S.; Galea, M.; Gerada, C.; Brown, N.. - In: IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS. - ISSN 0278-0046. - 65:4(2018), pp. 2996-3007. [10.1109/TIE.2017.2756592]

Analysis, Modeling, and Design Considerations for the Excitation Systems of Synchronous Generators

Nuzzo S.;
2018

Abstract

The traditional generating set is usually comprised of a classical, wound-field, salient-pole, or cylindrical rotor synchronous generator, excited by a separate smaller machine, via a rotating, uncontrolled diode rectifier. The effects of the commutation processes of the diode bridge are often overlooked and neglected. However, due to the uncontrolled nature of this process, the rectified voltage available at the main generator's rotor terminals can be significantly lower than the expected value. This is especially true for low-to-medium power rated systems. In this paper, a detailed investigation of these aspects is done and an accurate voltage drop prediction model is then proposed. The model is validated with finite-element analysis and with experimental results for a particular low-medium rated generating system in the 400 kVA power range. The validated tool is then integrated into an innovative design tool, which first performs an analytical presizing procedure and then utilizes a genetic algorithm approach to identify an optimal excitation system design, aimed at minimizing the voltage drop ensuing from the diode commutations, with minimum impact on the overall efficiency.
2018
65
4
2996
3007
Analysis, Modeling, and Design Considerations for the Excitation Systems of Synchronous Generators / Nuzzo, S.; Galea, M.; Gerada, C.; Brown, N.. - In: IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS. - ISSN 0278-0046. - 65:4(2018), pp. 2996-3007. [10.1109/TIE.2017.2756592]
Nuzzo, S.; Galea, M.; Gerada, C.; Brown, N.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1237563
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 43
social impact