In this paper we consider mixture generalized autoregressive conditional heteroskedastic models, and propose a new iteration algorithm of type EM for the estimation of model parameters. The maximum likelihood estimates are shown to be consistent, and their asymptotic properties are investigated. More precisely, we derive simple expressions in closed form for the asymptotic covariance matrix and the expected Fisher information matrix of the ML estimator. Finally, we study the model selection and propose testing procedures. A simulation study and an application to financial real series illustrate the results.
Statistical Inference for Mixture GARCH Models with Financial Application / Cavicchioli, Maddalena. - In: COMPUTATIONAL STATISTICS. - ISSN 0943-4062. - 36:4(2021), pp. 2615-2642. [10.1007/s00180-021-01092-5]
Statistical Inference for Mixture GARCH Models with Financial Application
Cavicchioli Maddalena
2021
Abstract
In this paper we consider mixture generalized autoregressive conditional heteroskedastic models, and propose a new iteration algorithm of type EM for the estimation of model parameters. The maximum likelihood estimates are shown to be consistent, and their asymptotic properties are investigated. More precisely, we derive simple expressions in closed form for the asymptotic covariance matrix and the expected Fisher information matrix of the ML estimator. Finally, we study the model selection and propose testing procedures. A simulation study and an application to financial real series illustrate the results.File | Dimensione | Formato | |
---|---|---|---|
final_pub_COMP STAT.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
638.88 kB
Formato
Adobe PDF
|
638.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris