In this paper we consider mixture generalized autoregressive conditional heteroskedastic models, and propose a new iteration algorithm of type EM for the estimation of model parameters. The maximum likelihood estimates are shown to be consistent, and their asymptotic properties are investigated. More precisely, we derive simple expressions in closed form for the asymptotic covariance matrix and the expected Fisher information matrix of the ML estimator. Finally, we study the model selection and propose testing procedures. A simulation study and an application to financial real series illustrate the results.

Statistical Inference for Mixture GARCH Models with Financial Application / Cavicchioli, Maddalena. - In: COMPUTATIONAL STATISTICS. - ISSN 0943-4062. - 36:4(2021), pp. 2615-2642. [10.1007/s00180-021-01092-5]

Statistical Inference for Mixture GARCH Models with Financial Application

Cavicchioli Maddalena
2021

Abstract

In this paper we consider mixture generalized autoregressive conditional heteroskedastic models, and propose a new iteration algorithm of type EM for the estimation of model parameters. The maximum likelihood estimates are shown to be consistent, and their asymptotic properties are investigated. More precisely, we derive simple expressions in closed form for the asymptotic covariance matrix and the expected Fisher information matrix of the ML estimator. Finally, we study the model selection and propose testing procedures. A simulation study and an application to financial real series illustrate the results.
2021
36
4
2615
2642
Statistical Inference for Mixture GARCH Models with Financial Application / Cavicchioli, Maddalena. - In: COMPUTATIONAL STATISTICS. - ISSN 0943-4062. - 36:4(2021), pp. 2615-2642. [10.1007/s00180-021-01092-5]
Cavicchioli, Maddalena
File in questo prodotto:
File Dimensione Formato  
final_pub_COMP STAT.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 638.88 kB
Formato Adobe PDF
638.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1236431
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact