The distribution of glutamic acid decarboxylase (GAD) mRNA was investigated throughout the rat brain by means of in situ hybridization. Hybridization was carried out with a 35S-radiolabeled cRNA probe transcribed from a cDNA from cat occipital cortex and cloned in a SP6-T7 promoter-containing vector. Fixed tissue sections were hybridized with 35S GAD probe (0.6 kb length). Signal was detected by means of film or emulsion autoradiography. The autoradiograms were semiquantitatively evaluated by means of computer-assisted image analysis. The results obtained with this evaluation were correlated with the results of the semiquantitative analysis of GAD immunoreactivity performed by Mugnaini and Oertel. Specific labeling was only observed in neuronal cell bodies, whereas no labeling was found over neuropil, glial and endothelial cells. The highest labeling was found in the bulbus olfactorius (internal plexiform and granular layers) and in the caudal magnocellular nucleus of the hypothalamus. Strong labeling was observed in the Purkinje layer of the cerebellar cortex, the interpeduncular nucleus, the interstitial nucleus of Cajal, the nucleus of Darkschewitsch and the suprachiasmatic nucleus. Intermediate or low levels of GAD mRNA were present in various brain nuclei, where gamma-aminobutyric acid (GABA)-containing cell bodies had been observed with other techniques. Interestingly, a low level of GAD mRNA was found in the caudate-putamen and nucleus accumbens, where the vast majority of nerve cells is known to contain GAD immunoreactivity. Only a poor correlation was found between the present semiquantitative measurements of GAD mRNA content and previous analyses of the number of GAD-immunoreactive cell bodies. The present study demonstrates that there exists a differential regional expression of GAD mRNA. The comparison with cell counts performed by immunocytochemistry suggests that some brain areas, such as caudate-putamen and nucleus accumbens, contain a large number of GAD-immunoreactive cell bodies which express a low level of GAD mRNA. The opposite seems to be true for other nuclei, such as the globus pallidus, the zona reticulata of the substantia nigra and the inferior collicle, where few GAD-immunoreactive cell bodies contain high levels of GAD mRNA. In conclusion, the present study gives a low magnification map of GAD mRNA levels in the adult male rat brain. Marked biochemical heterogeneities may be present among GABA neuronal populations based on their expression of GAD mRNA. The comparison between the present in situ hybridization and previous immunocytochemical studies suggests that there may exist at least two populations of GABA neurons in the brain, having high and low levels respectively of both GAD mRNA and GAD enzyme.

DISTRIBUTION OF GLUTAMIC-ACID DECARBOXYLASE MESSENGER RNA-CONTAINING NERVE-CELL POPULATIONS OF THE MALE-RAT BRAIN / Ferraguti, F; Zoli, Michele; Aronsson, M; Agnati, Luigi Francesco; Goldstein, M; Filer, D; Fuxe, K.. - In: JOURNAL OF CHEMICAL NEUROANATOMY. - ISSN 0891-0618. - STAMPA. - 3:(1990), pp. 377-396.

DISTRIBUTION OF GLUTAMIC-ACID DECARBOXYLASE MESSENGER RNA-CONTAINING NERVE-CELL POPULATIONS OF THE MALE-RAT BRAIN

FERRAGUTI F;ZOLI, Michele;AGNATI, Luigi Francesco;
1990

Abstract

The distribution of glutamic acid decarboxylase (GAD) mRNA was investigated throughout the rat brain by means of in situ hybridization. Hybridization was carried out with a 35S-radiolabeled cRNA probe transcribed from a cDNA from cat occipital cortex and cloned in a SP6-T7 promoter-containing vector. Fixed tissue sections were hybridized with 35S GAD probe (0.6 kb length). Signal was detected by means of film or emulsion autoradiography. The autoradiograms were semiquantitatively evaluated by means of computer-assisted image analysis. The results obtained with this evaluation were correlated with the results of the semiquantitative analysis of GAD immunoreactivity performed by Mugnaini and Oertel. Specific labeling was only observed in neuronal cell bodies, whereas no labeling was found over neuropil, glial and endothelial cells. The highest labeling was found in the bulbus olfactorius (internal plexiform and granular layers) and in the caudal magnocellular nucleus of the hypothalamus. Strong labeling was observed in the Purkinje layer of the cerebellar cortex, the interpeduncular nucleus, the interstitial nucleus of Cajal, the nucleus of Darkschewitsch and the suprachiasmatic nucleus. Intermediate or low levels of GAD mRNA were present in various brain nuclei, where gamma-aminobutyric acid (GABA)-containing cell bodies had been observed with other techniques. Interestingly, a low level of GAD mRNA was found in the caudate-putamen and nucleus accumbens, where the vast majority of nerve cells is known to contain GAD immunoreactivity. Only a poor correlation was found between the present semiquantitative measurements of GAD mRNA content and previous analyses of the number of GAD-immunoreactive cell bodies. The present study demonstrates that there exists a differential regional expression of GAD mRNA. The comparison with cell counts performed by immunocytochemistry suggests that some brain areas, such as caudate-putamen and nucleus accumbens, contain a large number of GAD-immunoreactive cell bodies which express a low level of GAD mRNA. The opposite seems to be true for other nuclei, such as the globus pallidus, the zona reticulata of the substantia nigra and the inferior collicle, where few GAD-immunoreactive cell bodies contain high levels of GAD mRNA. In conclusion, the present study gives a low magnification map of GAD mRNA levels in the adult male rat brain. Marked biochemical heterogeneities may be present among GABA neuronal populations based on their expression of GAD mRNA. The comparison between the present in situ hybridization and previous immunocytochemical studies suggests that there may exist at least two populations of GABA neurons in the brain, having high and low levels respectively of both GAD mRNA and GAD enzyme.
1990
3
377
396
DISTRIBUTION OF GLUTAMIC-ACID DECARBOXYLASE MESSENGER RNA-CONTAINING NERVE-CELL POPULATIONS OF THE MALE-RAT BRAIN / Ferraguti, F; Zoli, Michele; Aronsson, M; Agnati, Luigi Francesco; Goldstein, M; Filer, D; Fuxe, K.. - In: JOURNAL OF CHEMICAL NEUROANATOMY. - ISSN 0891-0618. - STAMPA. - 3:(1990), pp. 377-396.
Ferraguti, F; Zoli, Michele; Aronsson, M; Agnati, Luigi Francesco; Goldstein, M; Filer, D; Fuxe, K.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/12306
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 56
social impact