(1) The human luteinizing hormone (LH)/chorionic gonadotropin (hCG) receptor (LHCGR) discriminates its two hormone ligands and differs from the murine receptor (Lhr) in amino acid residues potentially involved in qualitative discerning of LH and hCG. The latter gon-adotropin is absent in rodents. The aim of the study is to identify LHCGR residues involved in hCG/LH discrimination. (2) Eight LHCGR cDNAs were developed, carrying “murinizing” mutations on aminoacidic residues assumed to interact specifically with LH, hCG, or both. HEK293 cells expressing a mutant or the wild type receptor were treated with LH or hCG and the kinetics of cyclic adenosine monophosphate (cAMP) and phosphorylated extracellular signal-regulated ki-nases 1/2 (pERK1/2) activation was analyzed by bioluminescence resonance energy transfer (BRET). (3) Mutations falling within the receptor leucine reach repeat 9 and 10 (LRR9 and LRR10; K225S +T226I and R247T), of the large extracellular binding domain, are linked to loss of hormone-specific induced cAMP increase, as well as hCG-specific pERK1/2 activation, leading to a Lhr-like modulation of the LHCGR-mediated intracellular signaling pattern. These results support the hypothesis that LHCGR LRR domain is the interaction site of the hormone β-L2 loop, which differs between LH and hCG, and might be fundamental for inducing gonadotropin-specific signals. (4) Taken to-gether, these data identify LHCGR key residues likely evolved in the human to discriminate LH/hCG specific binding.

Identification of key receptor residues discriminating human chorionic gonadotropin (Hcg)-and luteinizing hormone (lh)-specific signaling / Lazzaretti, C.; Secco, V.; Paradiso, E.; Sperduti, S.; Rutz, C.; Kreuchwig, A.; Krause, G.; Simoni, M.; Casarini, L.. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1661-6596. - 22:1(2021), pp. 1-14. [10.3390/ijms22010151]

Identification of key receptor residues discriminating human chorionic gonadotropin (Hcg)-and luteinizing hormone (lh)-specific signaling

Lazzaretti C.;Secco V.;Paradiso E.;Sperduti S.;Simoni M.;Casarini L.
2021

Abstract

(1) The human luteinizing hormone (LH)/chorionic gonadotropin (hCG) receptor (LHCGR) discriminates its two hormone ligands and differs from the murine receptor (Lhr) in amino acid residues potentially involved in qualitative discerning of LH and hCG. The latter gon-adotropin is absent in rodents. The aim of the study is to identify LHCGR residues involved in hCG/LH discrimination. (2) Eight LHCGR cDNAs were developed, carrying “murinizing” mutations on aminoacidic residues assumed to interact specifically with LH, hCG, or both. HEK293 cells expressing a mutant or the wild type receptor were treated with LH or hCG and the kinetics of cyclic adenosine monophosphate (cAMP) and phosphorylated extracellular signal-regulated ki-nases 1/2 (pERK1/2) activation was analyzed by bioluminescence resonance energy transfer (BRET). (3) Mutations falling within the receptor leucine reach repeat 9 and 10 (LRR9 and LRR10; K225S +T226I and R247T), of the large extracellular binding domain, are linked to loss of hormone-specific induced cAMP increase, as well as hCG-specific pERK1/2 activation, leading to a Lhr-like modulation of the LHCGR-mediated intracellular signaling pattern. These results support the hypothesis that LHCGR LRR domain is the interaction site of the hormone β-L2 loop, which differs between LH and hCG, and might be fundamental for inducing gonadotropin-specific signals. (4) Taken to-gether, these data identify LHCGR key residues likely evolved in the human to discriminate LH/hCG specific binding.
2021
22
1
1
14
Identification of key receptor residues discriminating human chorionic gonadotropin (Hcg)-and luteinizing hormone (lh)-specific signaling / Lazzaretti, C.; Secco, V.; Paradiso, E.; Sperduti, S.; Rutz, C.; Kreuchwig, A.; Krause, G.; Simoni, M.; Casarini, L.. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1661-6596. - 22:1(2021), pp. 1-14. [10.3390/ijms22010151]
Lazzaretti, C.; Secco, V.; Paradiso, E.; Sperduti, S.; Rutz, C.; Kreuchwig, A.; Krause, G.; Simoni, M.; Casarini, L.
File in questo prodotto:
File Dimensione Formato  
2021 Lazzaretti et al - International Journal of Molecular Sciences.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 3.45 MB
Formato Adobe PDF
3.45 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1227692
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact