Low-precision integer arithmetic is a necessary ingredient for enabling Deep Learning inference on tiny and resource-constrained IoT edge devices. This brief presents CMix-NN, a flexible open-sourceCMix-NN is available at https://github.com/EEESlab/CMix-NN. mixed low-precision (independent tensors quantization of weight and activations at 8, 4, 2 bits) inference library for low bitwidth Quantized Networks. CMix-NN efficiently supports both Per-Layer and Per-Channel quantization strategies of weights and activations. Thanks to CMix-NN, we deploy on an STM32H7 microcontroller a set of Mobilenet family networks with the largest input resolutions ( 224 imes 224 ) and higher accuracies (up to 68% Top1) when compressed with a mixed low precision technique, achieving up to +8% accuracy improvement concerning any other published solution for MCU devices.
CMix-NN: Mixed Low-Precision CNN Library for Memory-Constrained Edge Devices / Capotondi, A.; Rusci, M.; Fariselli, M.; Benini, L.. - In: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. II, EXPRESS BRIEFS. - ISSN 1549-7747. - 67:5(2020), pp. 871-875.
Data di pubblicazione: | 2020 |
Titolo: | CMix-NN: Mixed Low-Precision CNN Library for Memory-Constrained Edge Devices |
Autore/i: | Capotondi, A.; Rusci, M.; Fariselli, M.; Benini, L. |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1109/TCSII.2020.2983648 |
Rivista: | |
Volume: | 67 |
Fascicolo: | 5 |
Pagina iniziale: | 871 |
Pagina finale: | 875 |
Codice identificativo ISI: | WOS:000531324100015 |
Codice identificativo Scopus: | 2-s2.0-85084396346 |
Citazione: | CMix-NN: Mixed Low-Precision CNN Library for Memory-Constrained Edge Devices / Capotondi, A.; Rusci, M.; Fariselli, M.; Benini, L.. - In: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. II, EXPRESS BRIEFS. - ISSN 1549-7747. - 67:5(2020), pp. 871-875. |
Tipologia | Articolo su rivista |
File in questo prodotto:

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris