Memory-centric scheduling attempts to guarantee temporal predictability on commercial-off-the-shelf (COTS) multiprocessor systems to exploit their high performance for real-time applications. Several solutions proposed in the real-time literature have hardware requirements that are not easily satisfied by modern COTS platforms, like hardware support for strict memory partitioning or the presence of scratchpads. However, even without said hardware support, it is possible to design an efficient memory-centric scheduler. In this article, we design, implement, and analyze a memory-centric scheduler for deterministic memory management on COTS multiprocessor platforms without any hardware support. Our approach uses fixed-priority scheduling and proposes a global “memory preemption” scheme to boost real-time schedulability. The proposed scheduling protocol is implemented in the Jailhouse hypervisor and Erika real-time kernel. Measurements of the scheduler overhead demonstrate the applicability of the proposed approach, and schedulability experiments show a 20% gain in terms of schedulability when compared to contention-based and static fair-share approaches.
Fixed-priority memory-centric scheduler for COTS-based multiprocessors / Schwaricke, G.; Kloda, T.; Gracioli, G.; Bertogna, M.; Caccamo, M.. - 165:(2020). (Intervento presentato al convegno 32nd Euromicro Conference on Real-Time Systems, ECRTS 2020 tenutosi a Modena, Italy nel 2020) [10.4230/LIPIcs.ECRTS.2020.1].
Fixed-priority memory-centric scheduler for COTS-based multiprocessors
Kloda T.;Bertogna M.;Caccamo M.
2020
Abstract
Memory-centric scheduling attempts to guarantee temporal predictability on commercial-off-the-shelf (COTS) multiprocessor systems to exploit their high performance for real-time applications. Several solutions proposed in the real-time literature have hardware requirements that are not easily satisfied by modern COTS platforms, like hardware support for strict memory partitioning or the presence of scratchpads. However, even without said hardware support, it is possible to design an efficient memory-centric scheduler. In this article, we design, implement, and analyze a memory-centric scheduler for deterministic memory management on COTS multiprocessor platforms without any hardware support. Our approach uses fixed-priority scheduling and proposes a global “memory preemption” scheme to boost real-time schedulability. The proposed scheduling protocol is implemented in the Jailhouse hypervisor and Erika real-time kernel. Measurements of the scheduler overhead demonstrate the applicability of the proposed approach, and schedulability experiments show a 20% gain in terms of schedulability when compared to contention-based and static fair-share approaches.File | Dimensione | Formato | |
---|---|---|---|
LIPIcs-ECRTS-2020-1.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
627.34 kB
Formato
Adobe PDF
|
627.34 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris