We present a nonlinear predator-prey system consisting of a nonlocal conservation law for predators coupled with a parabolic equation for prey. The drift term in the predators' equation is a nonlocal function of the prey density, so that the movement of the predators can be directed towards regions with high prey density. Moreover, Lotka-Volterra type right hand sides describe the feeding. A theorem ensuring existence, uniqueness, continuous dependence of weak solutions, and various stability estimates is proved, in any space dimension. Numerical integrations show a few qualitative features of the solutions.
Hyperbolic predators vs. parabolic prey / Colombo, Rm; Rossi, E. - In: COMMUNICATIONS IN MATHEMATICAL SCIENCES. - ISSN 1539-6746. - 13:2(2015), pp. 369-400.
Data di pubblicazione: | 2015 |
Titolo: | Hyperbolic predators vs. parabolic prey |
Autore/i: | Colombo, Rm; Rossi, E |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.4310/CMS.2015.v13.n2.a6 |
Rivista: | |
Volume: | 13 |
Fascicolo: | 2 |
Pagina iniziale: | 369 |
Pagina finale: | 400 |
Codice identificativo ISI: | WOS:000351485700006 |
Codice identificativo Scopus: | 2-s2.0-84915748320 |
Citazione: | Hyperbolic predators vs. parabolic prey / Colombo, Rm; Rossi, E. - In: COMMUNICATIONS IN MATHEMATICAL SCIENCES. - ISSN 1539-6746. - 13:2(2015), pp. 369-400. |
Tipologia | Articolo su rivista |
File in questo prodotto:

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris