We consider the initial boundary value problem (IBVP) for a non‐local scalar conservation law in one space dimension. The non‐local operator in the flux function is not a mere convolution product, but it is assumed to be aware of boundaries. Introducing an adapted Lax‐Friedrichs algorithm, we provide various estimates on the approximate solutions that allow to prove the existence of solutions to the original IBVP. The uniqueness follows from the Lipschitz continuous dependence on initial and boundary data, which is proved exploiting results available for the local IBVP

Well‐posedness of IBVP for 1D scalar non‐local conservation laws / Goatin, P; Rossi, E. - In: ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK. - ISSN 0044-2267. - 99:11(2019). [10.1002/zamm.201800318]

Well‐posedness of IBVP for 1D scalar non‐local conservation laws

Rossi, E
2019

Abstract

We consider the initial boundary value problem (IBVP) for a non‐local scalar conservation law in one space dimension. The non‐local operator in the flux function is not a mere convolution product, but it is assumed to be aware of boundaries. Introducing an adapted Lax‐Friedrichs algorithm, we provide various estimates on the approximate solutions that allow to prove the existence of solutions to the original IBVP. The uniqueness follows from the Lipschitz continuous dependence on initial and boundary data, which is proved exploiting results available for the local IBVP
99
11
Well‐posedness of IBVP for 1D scalar non‐local conservation laws / Goatin, P; Rossi, E. - In: ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK. - ISSN 0044-2267. - 99:11(2019). [10.1002/zamm.201800318]
Goatin, P; Rossi, E
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/1226940
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact