We report results on the structure, physicochemical characteristics and purity of chondroitin sulfate (CS) samples derived from three largely available and common biological sources such as bovine and porcine trachea and chicken keel bones with the aim to define their structural signatures. Many lots of CS produced by a manufacturer at industrial scale were characterized with a view to assess the reproducibility of the process as not controlled extractive procedures may produce final products with variable structure and biological contaminants as well as not constant clinical efficacy and safety. By using standardized source animal tissues and manufacturing procedure, highly pure CS (∼92 %) products with constant structure and characteristics were obtained. Bovine CS showed a lower molecular weight (MWw of ∼21,500 Da) than porcine (MWw of ∼26,000 Da) and chicken (MWw of ∼35,900 Da) products with a CV% of ∼2.0–7.5 and a polydispersity variability of 0.7–2.7 %. The ratio between the sulfate groups main located in position 4 and 6 of N-acetyl-galactosamine (4/6 ratio) was ∼1.70 for bovine CS versus a value of 3.60 for porcine and ∼2.70 for chicken samples with a overall charge density of 0.92−0.93 and a CV% of 2.1−2.5. The final products also showed the presence of a very low and constant content of other co-purified bio(macro)molecules (hyaluronic acid, keratan sulfate, dermatan sulfate, heparan sulfate, nucleic acids and proteins), calcium and sodium, and the absence of versican. Finally, a high reproducibility of molecular weight values, disaccharide composition, specific optical rotation and particle dimension was observed. The observed parameters are structural signatures useful to specifically identify the origin of CS and obtained by a standardized and highly reproducible manufacturing process. The compositional profile determined from this study provides a measure of the norm and range of variation in CS samples of terrestrial origin produced under standardized production protocol to which future pharmaceutical/nutraceutical final products can be compared. Moreover, the physicochemical properties including molecular weight, disaccharide composition, presence of natural contaminants and particle dimension were characterized to provide the basis of CS of high quality for application as pharmaceutical/nutraceutical active agents.

Structural definition of terrestrial chondroitin sulfate of various origin and repeatability of the production process / Volpi, N.; Galeotti, F.; Maccari, F.; Capitani, F.; Mantovani, V.. - In: JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS. - ISSN 0731-7085. - 195:(2020), pp. 1-7. [10.1016/j.jpba.2020.113826]

Structural definition of terrestrial chondroitin sulfate of various origin and repeatability of the production process

Volpi N.;Galeotti F.;Maccari F.;Capitani F.;Mantovani V.
2020

Abstract

We report results on the structure, physicochemical characteristics and purity of chondroitin sulfate (CS) samples derived from three largely available and common biological sources such as bovine and porcine trachea and chicken keel bones with the aim to define their structural signatures. Many lots of CS produced by a manufacturer at industrial scale were characterized with a view to assess the reproducibility of the process as not controlled extractive procedures may produce final products with variable structure and biological contaminants as well as not constant clinical efficacy and safety. By using standardized source animal tissues and manufacturing procedure, highly pure CS (∼92 %) products with constant structure and characteristics were obtained. Bovine CS showed a lower molecular weight (MWw of ∼21,500 Da) than porcine (MWw of ∼26,000 Da) and chicken (MWw of ∼35,900 Da) products with a CV% of ∼2.0–7.5 and a polydispersity variability of 0.7–2.7 %. The ratio between the sulfate groups main located in position 4 and 6 of N-acetyl-galactosamine (4/6 ratio) was ∼1.70 for bovine CS versus a value of 3.60 for porcine and ∼2.70 for chicken samples with a overall charge density of 0.92−0.93 and a CV% of 2.1−2.5. The final products also showed the presence of a very low and constant content of other co-purified bio(macro)molecules (hyaluronic acid, keratan sulfate, dermatan sulfate, heparan sulfate, nucleic acids and proteins), calcium and sodium, and the absence of versican. Finally, a high reproducibility of molecular weight values, disaccharide composition, specific optical rotation and particle dimension was observed. The observed parameters are structural signatures useful to specifically identify the origin of CS and obtained by a standardized and highly reproducible manufacturing process. The compositional profile determined from this study provides a measure of the norm and range of variation in CS samples of terrestrial origin produced under standardized production protocol to which future pharmaceutical/nutraceutical final products can be compared. Moreover, the physicochemical properties including molecular weight, disaccharide composition, presence of natural contaminants and particle dimension were characterized to provide the basis of CS of high quality for application as pharmaceutical/nutraceutical active agents.
2020
195
1
7
Structural definition of terrestrial chondroitin sulfate of various origin and repeatability of the production process / Volpi, N.; Galeotti, F.; Maccari, F.; Capitani, F.; Mantovani, V.. - In: JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS. - ISSN 0731-7085. - 195:(2020), pp. 1-7. [10.1016/j.jpba.2020.113826]
Volpi, N.; Galeotti, F.; Maccari, F.; Capitani, F.; Mantovani, V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1226487
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact