We study the Γ-convergence of the functionals Fn(u):=||f(⋅,u(⋅),Du(⋅))||pjavax.xml.bind.JAXBElement@1599978c(⋅) and [Formula presented] defined on X∈{L1(Ω,Rd),L∞(Ω,Rd),C(Ω,Rd)} (endowed with their usual norms) with effective domain the Sobolev space W1,pjavax.xml.bind.JAXBElement@17c9c5d8(⋅)(Ω,Rd). Here Ω⊆RN is a bounded open set, N,d≥1 and the measurable functions pn:Ω→[1,+∞) satisfy the conditions ess supΩpn≤βess infΩpn<+∞ for a fixed constant β>1 and ess infΩpn→+∞ as n→+∞. We show that when f(x,u,⋅) is level convex and lower semicontinuous and it satisfies a uniform growth condition from below, then, as n→∞, the sequence (Fn)nΓ-converges in X to the functional F represented as F(u)=||f(⋅,u(⋅),Du(⋅))||∞ on the effective domain W1,∞(Ω,Rd). Moreover we show that the Γ-limnFn is given by the functional F(u):=0if||f(⋅,u(⋅),Du(⋅))||∞≤1,+∞otherwiseinX.
Γ-convergence for power-law functionals with variable exponents / Eleuteri, M.; Prinari, F.. - In: NONLINEAR ANALYSIS: REAL WORLD APPLICATIONS. - ISSN 1468-1218. - 58:(2021), pp. 103-221. [10.1016/j.nonrwa.2020.103221]
Γ-convergence for power-law functionals with variable exponents
Eleuteri M.;
2021
Abstract
We study the Γ-convergence of the functionals Fn(u):=||f(⋅,u(⋅),Du(⋅))||pjavax.xml.bind.JAXBElement@1599978c(⋅) and [Formula presented] defined on X∈{L1(Ω,Rd),L∞(Ω,Rd),C(Ω,Rd)} (endowed with their usual norms) with effective domain the Sobolev space W1,pjavax.xml.bind.JAXBElement@17c9c5d8(⋅)(Ω,Rd). Here Ω⊆RN is a bounded open set, N,d≥1 and the measurable functions pn:Ω→[1,+∞) satisfy the conditions ess supΩpn≤βess infΩpn<+∞ for a fixed constant β>1 and ess infΩpn→+∞ as n→+∞. We show that when f(x,u,⋅) is level convex and lower semicontinuous and it satisfies a uniform growth condition from below, then, as n→∞, the sequence (Fn)nΓ-converges in X to the functional F represented as F(u)=||f(⋅,u(⋅),Du(⋅))||∞ on the effective domain W1,∞(Ω,Rd). Moreover we show that the Γ-limnFn is given by the functional F(u):=0if||f(⋅,u(⋅),Du(⋅))||∞≤1,+∞otherwiseinX.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris