Bottom-up approaches exploiting on-surface synthesis reactions allow atomic-scale precision in the fabrication of graphene nanoribbons (GNRs); this is essential for their technological applications since their unique electronic and optical properties are largely controlled by the specific edge structure. By means of a combined experimental-theoretical investigation of some prototype GNRs, we show here that high-resolution electron energy-loss spectroscopy (HREELS) can be successfully employed to fingerprint the details of the GNR edge structure. In particular, we demonstrate how the features of HREEL vibrational spectra-mainly dictated by edge CH out-of-plane modes-are unambiguously related to the GNR edge structure. Moreover, we single out those modes which are localized at the GNR termini and show how their relative intensity can be related to the average GNR length.
Vibrational signature of the graphene nanoribbon edge structure from high-resolution electron energy-loss spectroscopy / Cavani, N.; De Corato, M.; Ruini, A.; Prezzi, D.; Molinari, E.; Lodi Rizzini, A.; Rosi, A.; Biagi, R.; Corradini, V.; Wang, X. -Y.; Feng, X.; Narita, A.; Mullen, K.; De Renzi, V.. - In: NANOSCALE. - ISSN 2040-3364. - 12:38(2020), pp. 19681-19688. [10.1039/d0nr05763k]
Vibrational signature of the graphene nanoribbon edge structure from high-resolution electron energy-loss spectroscopy
Cavani N.;De Corato M.;Ruini A.;Prezzi D.;Molinari E.;Lodi Rizzini A.;Rosi A.;Biagi R.;Corradini V.;De Renzi V.
2020
Abstract
Bottom-up approaches exploiting on-surface synthesis reactions allow atomic-scale precision in the fabrication of graphene nanoribbons (GNRs); this is essential for their technological applications since their unique electronic and optical properties are largely controlled by the specific edge structure. By means of a combined experimental-theoretical investigation of some prototype GNRs, we show here that high-resolution electron energy-loss spectroscopy (HREELS) can be successfully employed to fingerprint the details of the GNR edge structure. In particular, we demonstrate how the features of HREEL vibrational spectra-mainly dictated by edge CH out-of-plane modes-are unambiguously related to the GNR edge structure. Moreover, we single out those modes which are localized at the GNR termini and show how their relative intensity can be related to the average GNR length.File | Dimensione | Formato | |
---|---|---|---|
d0nr05763k.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris