We consider the setting of Reeb graphs of piecewise linear functions and study distances between them that are stable, meaning that functions which are similar in the supremum norm ought to have similar Reeb graphs. We define an edit distance for Reeb graphs and prove that it is stable and universal, meaning that it provides an upper bound to any other stable distance. In contrast, via a specific construction, we show that the interleaving distance and the functional distortion distance on Reeb graphs are not universal.

The Reeb Graph Edit Distance is Universal / Bauer, Ulrich; Landi, Claudia; Mémoli, Facundo. - In: FOUNDATIONS OF COMPUTATIONAL MATHEMATICS. - ISSN 1615-3375. - 21:(2020), pp. 1441-1464. [10.1007/s10208-020-09488-3]

The Reeb Graph Edit Distance is Universal

Bauer, Ulrich;Landi, Claudia;
2020

Abstract

We consider the setting of Reeb graphs of piecewise linear functions and study distances between them that are stable, meaning that functions which are similar in the supremum norm ought to have similar Reeb graphs. We define an edit distance for Reeb graphs and prove that it is stable and universal, meaning that it provides an upper bound to any other stable distance. In contrast, via a specific construction, we show that the interleaving distance and the functional distortion distance on Reeb graphs are not universal.
21
1441
1464
The Reeb Graph Edit Distance is Universal / Bauer, Ulrich; Landi, Claudia; Mémoli, Facundo. - In: FOUNDATIONS OF COMPUTATIONAL MATHEMATICS. - ISSN 1615-3375. - 21:(2020), pp. 1441-1464. [10.1007/s10208-020-09488-3]
Bauer, Ulrich; Landi, Claudia; Mémoli, Facundo
File in questo prodotto:
File Dimensione Formato  
FoCM-The Reeb Graph Edit Distance is Universal.pdf

non disponibili

Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 589.67 kB
Formato Adobe PDF
589.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1226053
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact