We consider the Cauchy problem: {∂tu=Δu-u+λf(u)in(0,T)×R2,u(0,x)=u0(x)inR2,where λ> 0 , f(u):=2α0ueα0u2,for someα0>0,with initial data u∈ H1(R2). The nonlinear term f has a critical growth at infinity in the energy space H1(R2) in view of the Trudinger-Moser embedding. Our goal is to investigate from the initial data u∈ H1(R2) whether the solution blows up in finite time or the solution is global in time. For 0<12α0, we prove that for initial data with energies below or equal to the ground state level, the dichotomy between finite time blow-up and global existence can be determined by means of a potential well argument.
Asymptotics for a parabolic equation with critical exponential nonlinearity / Ishiwata, M.; Ruf, B.; Sani, F.; Terraneo, E.. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - 21:2(2021), pp. 1677-1716. [10.1007/s00028-020-00649-z]
Asymptotics for a parabolic equation with critical exponential nonlinearity
Sani F.;
2021
Abstract
We consider the Cauchy problem: {∂tu=Δu-u+λf(u)in(0,T)×R2,u(0,x)=u0(x)inR2,where λ> 0 , f(u):=2α0ueα0u2,for someα0>0,with initial data u∈ H1(R2). The nonlinear term f has a critical growth at infinity in the energy space H1(R2) in view of the Trudinger-Moser embedding. Our goal is to investigate from the initial data u∈ H1(R2) whether the solution blows up in finite time or the solution is global in time. For 0<12α0, we prove that for initial data with energies below or equal to the ground state level, the dichotomy between finite time blow-up and global existence can be determined by means of a potential well argument.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris