Amyloids-β (Aβ) fibrils are involved in several neurodegenerative diseases. In this study, atomistic molecular dynamics simulations have been used to investigate how monolayer-protected gold nanoparticles interact with Aβ(1-40) and Aβ(1-42) fibrils. Our results show that small gold nanoparticles bind with the external side of amyloid-β fibrils that is involved in the fibrillation process. The binding affinity, studied for both kinds of fibrils as a function of the monolayer composition and the nanoparticle diameter, is modulated by hydrophobic interactions and ligand monolayer conformation. Our findings thus show that monolayer-protected nanoparticles are good candidates to prevent fibril aggregation and secondary nucleation or to deliver drugs to specific fibril regions.
Computational insights into the binding of monolayer-capped gold nanoparticles onto amyloid-β fibrils / Tavanti, F.; Pedone, A.; Menziani, M. C.; Alexander-Katz, A.. - In: ACS CHEMICAL NEUROSCIENCE. - ISSN 1948-7193. - 11:19(2020), pp. 3153-3160. [10.1021/acschemneuro.0c00497]
Computational insights into the binding of monolayer-capped gold nanoparticles onto amyloid-β fibrils
Tavanti F.
;Pedone A.;Menziani M. C.;
2020
Abstract
Amyloids-β (Aβ) fibrils are involved in several neurodegenerative diseases. In this study, atomistic molecular dynamics simulations have been used to investigate how monolayer-protected gold nanoparticles interact with Aβ(1-40) and Aβ(1-42) fibrils. Our results show that small gold nanoparticles bind with the external side of amyloid-β fibrils that is involved in the fibrillation process. The binding affinity, studied for both kinds of fibrils as a function of the monolayer composition and the nanoparticle diameter, is modulated by hydrophobic interactions and ligand monolayer conformation. Our findings thus show that monolayer-protected nanoparticles are good candidates to prevent fibril aggregation and secondary nucleation or to deliver drugs to specific fibril regions.File | Dimensione | Formato | |
---|---|---|---|
AcsChemNeuro_2020_11_3153.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
3.5 MB
Formato
Adobe PDF
|
3.5 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris