We consider a scalar parabolic equation in one spatial dimension. The equation is constituted by a convective term, a reaction term with one or two equilibria, and a positive diffusivity which can however vanish. We prove the existence and several properties of traveling-wave solutions to such an equation. In particular, we provide a sharp estimate for the minimal speed of the profiles and improve previous results about the regularity of wavefronts. Moreover, we show the existence of an infinite number of semi-wavefronts with the same speed.

Uniqueness and nonuniqueness of fronts for degenerate diffusion-convection reaction equations / Berti, D.; Corli, A.; Malaguti, L.. - In: ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS. - ISSN 1417-3875. - 2020:66(2020), pp. 1-34. [10.14232/ejqtde.2020.1.66]

Uniqueness and nonuniqueness of fronts for degenerate diffusion-convection reaction equations

Berti D.;Malaguti L.
2020

Abstract

We consider a scalar parabolic equation in one spatial dimension. The equation is constituted by a convective term, a reaction term with one or two equilibria, and a positive diffusivity which can however vanish. We prove the existence and several properties of traveling-wave solutions to such an equation. In particular, we provide a sharp estimate for the minimal speed of the profiles and improve previous results about the regularity of wavefronts. Moreover, we show the existence of an infinite number of semi-wavefronts with the same speed.
2020
27-nov-2020
2020
66
1
34
Uniqueness and nonuniqueness of fronts for degenerate diffusion-convection reaction equations / Berti, D.; Corli, A.; Malaguti, L.. - In: ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS. - ISSN 1417-3875. - 2020:66(2020), pp. 1-34. [10.14232/ejqtde.2020.1.66]
Berti, D.; Corli, A.; Malaguti, L.
File in questo prodotto:
File Dimensione Formato  
Berti Corli Malaguti 2020.pdf

Open access

Descrizione: Articolo principale
Tipologia: Versione pubblicata dall'editore
Dimensione 673.05 kB
Formato Adobe PDF
673.05 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1223721
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact