In this paper we consider a two-mode dynamical system as a model for a driven one-dimensional damped Bose–Einstein condensate in a double-well trapping potential. In the case of a constant external driving force the existence and stability of stationary solutions are discussed in relation to the values of the physical parameters. In the case of a time-dependent periodic external driving force the existence of limit cycles is proved, and the amplitude of these limit cycles exhibits a jump phenomenon for critical values of the physical parameters.

On a mathematical model for a damped and driven double-well Bose–Einstein condensate / Gavioli, A.; Sacchetti, A.. - In: PHYSICA D-NONLINEAR PHENOMENA. - ISSN 0167-2789. - 414:(2020), pp. 132711-132711. [10.1016/j.physd.2020.132711]

On a mathematical model for a damped and driven double-well Bose–Einstein condensate

Gavioli A.;Sacchetti A.
2020

Abstract

In this paper we consider a two-mode dynamical system as a model for a driven one-dimensional damped Bose–Einstein condensate in a double-well trapping potential. In the case of a constant external driving force the existence and stability of stationary solutions are discussed in relation to the values of the physical parameters. In the case of a time-dependent periodic external driving force the existence of limit cycles is proved, and the amplitude of these limit cycles exhibits a jump phenomenon for critical values of the physical parameters.
2020
414
132711
132711
On a mathematical model for a damped and driven double-well Bose–Einstein condensate / Gavioli, A.; Sacchetti, A.. - In: PHYSICA D-NONLINEAR PHENOMENA. - ISSN 0167-2789. - 414:(2020), pp. 132711-132711. [10.1016/j.physd.2020.132711]
Gavioli, A.; Sacchetti, A.
File in questo prodotto:
File Dimensione Formato  
Article_2020_04.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 716.83 kB
Formato Adobe PDF
716.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1223617
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact