In this paper we give the quantization rules to determine the normalized stationary solutions to the cubic nonlinear Schrödinger equation with quasi-periodic conditions on a given interval. Similarly to what happen in the Floquet's theory for linear periodic operators, also in this case some kind of band functions there exist.

Stationary solutions to cubic nonlinear Schrödinger equations with quasi-periodic boundary conditions / Sacchetti, A.. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 53:38(2020), pp. 385204-385204. [10.1088/1751-8121/aba861]

Stationary solutions to cubic nonlinear Schrödinger equations with quasi-periodic boundary conditions

Sacchetti A.
2020

Abstract

In this paper we give the quantization rules to determine the normalized stationary solutions to the cubic nonlinear Schrödinger equation with quasi-periodic conditions on a given interval. Similarly to what happen in the Floquet's theory for linear periodic operators, also in this case some kind of band functions there exist.
2020
53
38
385204
385204
Stationary solutions to cubic nonlinear Schrödinger equations with quasi-periodic boundary conditions / Sacchetti, A.. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 53:38(2020), pp. 385204-385204. [10.1088/1751-8121/aba861]
Sacchetti, A.
File in questo prodotto:
File Dimensione Formato  
Article_2020_03.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 629.79 kB
Formato Adobe PDF
629.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1223616
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact