For a series of Markov processes we prove stochastic duality relations with duality functions given by orthogonal polynomials. This means that expectations with respect to the original process (which evolves the variable of the orthogonal polynomial) can be studied via expectations with respect to the dual process (which evolves the index of the polynomial). The set of processes include interacting particle systems, such as the exclusion process, the inclusion process and independent random walkers, as well as interacting diffusions and redistribution models of Kipnis–Marchioro–Presutti type. Duality functions are given in terms of classical orthogonal polynomials, both of discrete and continuous variable, and the measure in the orthogonality relation coincides with the process stationary measure.
Stochastic Duality and Orthogonal Polynomials / Franceschini, C.; Giardina', C.. - 300:(2019), pp. 187-214. [10.1007/978-981-15-0302-3_7]
Stochastic Duality and Orthogonal Polynomials
Franceschini C.;Giardina' C.
2019
Abstract
For a series of Markov processes we prove stochastic duality relations with duality functions given by orthogonal polynomials. This means that expectations with respect to the original process (which evolves the variable of the orthogonal polynomial) can be studied via expectations with respect to the dual process (which evolves the index of the polynomial). The set of processes include interacting particle systems, such as the exclusion process, the inclusion process and independent random walkers, as well as interacting diffusions and redistribution models of Kipnis–Marchioro–Presutti type. Duality functions are given in terms of classical orthogonal polynomials, both of discrete and continuous variable, and the measure in the orthogonality relation coincides with the process stationary measure.File | Dimensione | Formato | |
---|---|---|---|
Duality-OP-submitted.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
306.56 kB
Formato
Adobe PDF
|
306.56 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris