The work is focused on understanding the dynamics of the processes which occur at the interface between ceria and platinum during redox processes, by investigating an inverse catalytic model system made of ceria epitaxial islands and ultrathin films supported on Pt(111). The evolution of the morphology, structure and electronic properties is analyzed in real-time during reduction and oxidation, using low-energy electron microscopy and spatially resolved low-energy electron diffraction. The reduction is induced using different methods, namely thermal treatments in ultra-high vacuum and in H2 as well as deposition of Ce on the oxide surface, while re-oxidation is obtained by exposure to oxygen at elevated temperature. The use of two different epitaxial systems, continuous films and nanostructures, allows determining the influence of platinum proximity on the stabilization of the specific phases observed. The factors that limit the reversibility of the observed modifications with the different oxidation treatments are also discussed. The obtained results highlight important aspects of the cerium oxide/Pt interaction that are relevant for a complete understanding of the behavior of Pt/CeO2 catalysts.

Dynamics of the interaction between ceria and platinum during redox processes / Luches, P.; Gasperi, G.; Sauerbrey, M.; Valeri, S.; Falta, J.; Flege, J. I.. - In: FRONTIERS IN CHEMISTRY. - ISSN 2296-2646. - 7:FEB(2019), pp. 1-11. [10.3389/fchem.2019.00057]

Dynamics of the interaction between ceria and platinum during redox processes

Luches P.;Gasperi G.;Valeri S.;
2019

Abstract

The work is focused on understanding the dynamics of the processes which occur at the interface between ceria and platinum during redox processes, by investigating an inverse catalytic model system made of ceria epitaxial islands and ultrathin films supported on Pt(111). The evolution of the morphology, structure and electronic properties is analyzed in real-time during reduction and oxidation, using low-energy electron microscopy and spatially resolved low-energy electron diffraction. The reduction is induced using different methods, namely thermal treatments in ultra-high vacuum and in H2 as well as deposition of Ce on the oxide surface, while re-oxidation is obtained by exposure to oxygen at elevated temperature. The use of two different epitaxial systems, continuous films and nanostructures, allows determining the influence of platinum proximity on the stabilization of the specific phases observed. The factors that limit the reversibility of the observed modifications with the different oxidation treatments are also discussed. The obtained results highlight important aspects of the cerium oxide/Pt interaction that are relevant for a complete understanding of the behavior of Pt/CeO2 catalysts.
2019
7
FEB
1
11
Dynamics of the interaction between ceria and platinum during redox processes / Luches, P.; Gasperi, G.; Sauerbrey, M.; Valeri, S.; Falta, J.; Flege, J. I.. - In: FRONTIERS IN CHEMISTRY. - ISSN 2296-2646. - 7:FEB(2019), pp. 1-11. [10.3389/fchem.2019.00057]
Luches, P.; Gasperi, G.; Sauerbrey, M.; Valeri, S.; Falta, J.; Flege, J. I.
File in questo prodotto:
File Dimensione Formato  
fchem-07-00057.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 3.53 MB
Formato Adobe PDF
3.53 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1222863
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact