Climate change is increasing drought events and decreasing water availability. Tomato is commonly transplanted to an open field after seedling production in a nursery, requiring large volumes of water. Arbuscular mycorrhizal (AM) fungi help plants cope with drought stress; however, their effects depend on plant genotype and environmental conditions. In this study, we assessed the interactions among different tomato seedling genotypes and two AM fungi, Funneliformis mosseae and Rhizophagus intraradices, under two water regimes, full and reduced. Our results showed that F. mosseae was more effective than R. intraradices in the mitigation of drought stress both in old and modern genotypes. However, seedlings inoculated with R. intraradices recorded the highest values of leaf area. ‘Pearson’ and ‘Everton’ genotypes inoculated with F. mosseae recorded the highest values of root, leaf, and total dry weights under full and reduced irrigation regimes, respectively. In addition, ‘Pearson’ and ‘H3402’ genotypes inoculated with F. mosseae under a reduced irrigation regime displayed high values of water use efficiency. Our results highlight the importance of using AM fungi to mitigate drought stress in nursery production of tomato seedlings. However, the development of ad hoc AM fungal formulations, which consider genotype x AM fungi interactions, is fundamental for achieving the best agronomic performances.
Interaction of tomato genotypes and arbuscular mycorrhizal fungi under reduced irrigation / Ronga, D.; Caradonia, F.; Francia, E.; Morcia, C.; Rizza, F.; Badeck, F.; Ghizzoni, R.; Terzi, V.. - In: HORTICULTURAE. - ISSN 2311-7524. - 5:4(2019), pp. 1-15. [10.3390/horticulturae5040079]
Interaction of tomato genotypes and arbuscular mycorrhizal fungi under reduced irrigation
Ronga D.;Caradonia F.;Francia E.;Rizza F.;Terzi V.
2019
Abstract
Climate change is increasing drought events and decreasing water availability. Tomato is commonly transplanted to an open field after seedling production in a nursery, requiring large volumes of water. Arbuscular mycorrhizal (AM) fungi help plants cope with drought stress; however, their effects depend on plant genotype and environmental conditions. In this study, we assessed the interactions among different tomato seedling genotypes and two AM fungi, Funneliformis mosseae and Rhizophagus intraradices, under two water regimes, full and reduced. Our results showed that F. mosseae was more effective than R. intraradices in the mitigation of drought stress both in old and modern genotypes. However, seedlings inoculated with R. intraradices recorded the highest values of leaf area. ‘Pearson’ and ‘Everton’ genotypes inoculated with F. mosseae recorded the highest values of root, leaf, and total dry weights under full and reduced irrigation regimes, respectively. In addition, ‘Pearson’ and ‘H3402’ genotypes inoculated with F. mosseae under a reduced irrigation regime displayed high values of water use efficiency. Our results highlight the importance of using AM fungi to mitigate drought stress in nursery production of tomato seedlings. However, the development of ad hoc AM fungal formulations, which consider genotype x AM fungi interactions, is fundamental for achieving the best agronomic performances.File | Dimensione | Formato | |
---|---|---|---|
ronga2019.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris