For manufacturing companies, the transition to circular business models (CBMs) can be hampered both by the lack of relevant data and by operational tools. Eco-design, associated with Industry 4.0 IoT (Internet of Things) technologies, can be an effective methodological approach in developing products that are consistent with the principles of the circular economy. The reason is that, in the design phase, decisions are made that can significantly influence the degree of sustainability of products during their lifecycle. Therefore, in the manufacturing environment, eco-design represents an innovative approach to include sustainability among the traditional industrial variables such as functionality, aesthetics, quality, and profit. This study aimed to test eco-design as a tool to define the equilibrium point between sustainability and circular economy in the manufacturing environment of ceramic tile production, and to demonstrate how new business opportunities can be created through evolution from a linear to a circular business model, thanks to IoT and Industry 4.0 technologies used as enabling factors. The main result of this paper was the empirical validation in a manufacturing environment of sustainability paradigms through eco-design tools and digital technologies, proposing the circular business model as an operational tool to promote the competitiveness of enterprises.

Identifying the equilibrium point between sustainability goals and circular economy practices in an Industry 4.0 manufacturing context using eco-design / Garcia-Muina, F. E.; Gonzalez-Sanchez, R.; Ferrari, A. M.; Volpi, L.; Pini, M.; Siligardi, C.; Settembre-Blundo, D.. - In: SOCIAL SCIENCES. - ISSN 2076-0760. - 8:8(2019), pp. 1-22. [10.3390/socsci8080241]

Identifying the equilibrium point between sustainability goals and circular economy practices in an Industry 4.0 manufacturing context using eco-design

Ferrari A. M.;Volpi L.;Pini M.;Siligardi C.;
2019-01-01

Abstract

For manufacturing companies, the transition to circular business models (CBMs) can be hampered both by the lack of relevant data and by operational tools. Eco-design, associated with Industry 4.0 IoT (Internet of Things) technologies, can be an effective methodological approach in developing products that are consistent with the principles of the circular economy. The reason is that, in the design phase, decisions are made that can significantly influence the degree of sustainability of products during their lifecycle. Therefore, in the manufacturing environment, eco-design represents an innovative approach to include sustainability among the traditional industrial variables such as functionality, aesthetics, quality, and profit. This study aimed to test eco-design as a tool to define the equilibrium point between sustainability and circular economy in the manufacturing environment of ceramic tile production, and to demonstrate how new business opportunities can be created through evolution from a linear to a circular business model, thanks to IoT and Industry 4.0 technologies used as enabling factors. The main result of this paper was the empirical validation in a manufacturing environment of sustainability paradigms through eco-design tools and digital technologies, proposing the circular business model as an operational tool to promote the competitiveness of enterprises.
8
8
1
22
Identifying the equilibrium point between sustainability goals and circular economy practices in an Industry 4.0 manufacturing context using eco-design / Garcia-Muina, F. E.; Gonzalez-Sanchez, R.; Ferrari, A. M.; Volpi, L.; Pini, M.; Siligardi, C.; Settembre-Blundo, D.. - In: SOCIAL SCIENCES. - ISSN 2076-0760. - 8:8(2019), pp. 1-22. [10.3390/socsci8080241]
Garcia-Muina, F. E.; Gonzalez-Sanchez, R.; Ferrari, A. M.; Volpi, L.; Pini, M.; Siligardi, C.; Settembre-Blundo, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1222502
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 49
social impact