Purpose: Shoulder instability and reduced range of motion are two common complications of a total reverse shoulder arthroplasty. In this work, a new approach is proposed to estimate how the glenoid component positioning can influence the stability and the range of motion of a reverse shoulder prosthesis. Materials and methods: A standard reverse shoulder prosthesis has been analysed. To perform virtual simulation of the shoulder-prosthesis assembly, all the components of the prosthesis have been acquired via a 3D laser scanner and the solid models of the shoulder bones have been reconstructed through CT images. Loads on the shoulder joint have been estimated using anatomical models database. A new virtual/numerical procedure has been implemented using a 3D parametric modelling software to find the optimal position of the glenosphere. Results: Several analyses have been performed using different configurations obtained by changing the glenoid component tilt and the lateral position of the glenosphere, modified through the insertion of a cylindrical spacer. For the analysed case study, it was found that the interposition of a spacer (between the baseplate and the glenoid) and 15° inferior tilt of the glenosphere allow improving the range of motion and the stability of the shoulder. Conclusions: Some common complications of the reverse shoulder arthroplasty could be effectively reduced by a suitable positioning of the prosthesis components. In this work, using a new method based on virtual simulations, the influence of the glenosphere positioning has been investigated. An optimal configuration for the analysed case study has been found. The proposed approach could be used to find, with no in vivo experiments, the optimal position of a reverse shoulder prosthesis depending on the different dimensions and shape of the bones of each patient.

A new method to evaluate the influence of the glenosphere positioning on stability and range of motion of a reverse shoulder prosthesis / Ingrassia, T.; Nigrelli, V.; Ricotta, V.; Nalbone, L.; D'Arienzo, A.; D'Arienzo, M.; Porcellini, G.. - In: INJURY. - ISSN 0020-1383. - 50:(2019), pp. S12-S17. [10.1016/j.injury.2019.01.039]

A new method to evaluate the influence of the glenosphere positioning on stability and range of motion of a reverse shoulder prosthesis

Porcellini G.
2019

Abstract

Purpose: Shoulder instability and reduced range of motion are two common complications of a total reverse shoulder arthroplasty. In this work, a new approach is proposed to estimate how the glenoid component positioning can influence the stability and the range of motion of a reverse shoulder prosthesis. Materials and methods: A standard reverse shoulder prosthesis has been analysed. To perform virtual simulation of the shoulder-prosthesis assembly, all the components of the prosthesis have been acquired via a 3D laser scanner and the solid models of the shoulder bones have been reconstructed through CT images. Loads on the shoulder joint have been estimated using anatomical models database. A new virtual/numerical procedure has been implemented using a 3D parametric modelling software to find the optimal position of the glenosphere. Results: Several analyses have been performed using different configurations obtained by changing the glenoid component tilt and the lateral position of the glenosphere, modified through the insertion of a cylindrical spacer. For the analysed case study, it was found that the interposition of a spacer (between the baseplate and the glenoid) and 15° inferior tilt of the glenosphere allow improving the range of motion and the stability of the shoulder. Conclusions: Some common complications of the reverse shoulder arthroplasty could be effectively reduced by a suitable positioning of the prosthesis components. In this work, using a new method based on virtual simulations, the influence of the glenosphere positioning has been investigated. An optimal configuration for the analysed case study has been found. The proposed approach could be used to find, with no in vivo experiments, the optimal position of a reverse shoulder prosthesis depending on the different dimensions and shape of the bones of each patient.
2019
50
S12
S17
A new method to evaluate the influence of the glenosphere positioning on stability and range of motion of a reverse shoulder prosthesis / Ingrassia, T.; Nigrelli, V.; Ricotta, V.; Nalbone, L.; D'Arienzo, A.; D'Arienzo, M.; Porcellini, G.. - In: INJURY. - ISSN 0020-1383. - 50:(2019), pp. S12-S17. [10.1016/j.injury.2019.01.039]
Ingrassia, T.; Nigrelli, V.; Ricotta, V.; Nalbone, L.; D'Arienzo, A.; D'Arienzo, M.; Porcellini, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1221894
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 8
social impact