Background. Numerous studies have shown that baseline drug resistance patterns may influence the outcome of antiretroviral therapy. Therefore, guidelines recommend drug resistance testing to guide the choice of initial regimen. In addition to optimizing individual patient management, these baseline resistance data enable transmitted drug resistance (TDR) to be surveyed for public health purposes. The SPREAD program systematically collects data to gain insight into TDR occurring in Europe since 2001. Methods. Demographic, clinical, and virological data from 4140 antiretroviral-naive human immunodeficiency virus (HIV)-infected individuals from 26 countries who were newly diagnosed between 2008 and 2010 were analyzed. Evidence of TDR was defined using the WHO list for surveillance of drug resistance mutations. Prevalence of TDR was assessed over time by comparing the results to SPREAD data from 2002 to 2007. Baseline susceptibility to antiretroviral drugs was predicted using the Stanford HIVdb program version 7.0. Results. The overall prevalence of TDR did not change significantly over time and was 8.3% (95% confidence interval, 7.2%-9.5%) in 2008-2010. The most frequent indicators of TDR were nucleoside reverse transcriptase inhibitor (NRTI) mutations (4.5%), followed by nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations (2.9%) and protease inhibitor mutations (2.0%). Baseline mutations were most predictive of reduced susceptibility to initial NNRTI-based regimens: 4.5% and 6.5% of patient isolates were predicted to have resistance to regimens containing efavirenz or rilpivirine, respectively, independent of current NRTI backbones. Conclusions. Although TDR was highest for NRTIs, the impact of baseline drug resistance patterns on susceptibility was largest for NNRTIs. The prevalence of TDR assessed by epidemiological surveys does not clearly indicate to what degree susceptibility to different drug classes is affected.
Transmission of HIV drug resistance and the predicted effect on current first-line regimens in Europe / Hofstra, L. M.; Sauvageot, N.; Albert, J.; Alexiev, I.; Garcia, F.; Struck, D.; Van De Vijver, D. A. M. C.; Asjo, B.; Beshkov, D.; Coughlan, S.; Descamps, D.; Griskevicius, A.; Hamouda, O.; Horban, A.; Van Kasteren, M.; Kolupajeva, T.; Kostrikis, L. G.; Liitsola, K.; Linka, M.; Mor, O.; Nielsen, C.; Otelea, D.; Paraskevis, D.; Paredes, R.; Poljak, M.; Puchhammer-Stockl, E.; Sonnerborg, A.; Stanekova, D.; Stanojevic, M.; Van Laethem, K.; Zazzi, M.; Lepej, S. Z.; Boucher, C. A. B.; Schmit, J. -C.; Wensing, A. M. J.; Puchhammer-Stockl, E.; Sarcletti, M.; Schmied, B.; Geit, M.; Balluch, G.; Vandamme, A. -M.; Vercauteren, J.; Derdelinckx, I.; Sasse, A.; Bogaert, M.; Ceunen, H.; De Roo, A.; De Wit, S.; Echahidi, F.; Fransen, K.; Goffard, J. -C.; Goubau, P.; Goudeseune, E.; Yombi, J. -C.; Lacor, P.; Liesnard, C.; Moutschen, M.; Pierard, D.; Rens, R.; Schrooten, Y.; Vaira, D.; Vandekerckhove, L. P. R.; Van Den Heuvel, A.; Van Der Gucht, B.; Van Ranst, M.; Van Wijngaerden, E.; Vandercam, B.; Vekemans, M.; Verhofstede, C.; Clumeck, N.; Begovac, J.; Demetriades, I.; Kousiappa, I.; Demetriou, V.; Hezka, J.; Maly, M.; Machala, L.; Jorgensen, L. B.; Gerstoft, J.; Mathiesen, L.; Pedersen, C.; Nielsen, H.; Laursen, A.; Kvinesdal, B.; Ristola, M.; Suni, J.; Sutinen, J.; Assoumou, L.; Castor, G.; Grude, M.; Flandre, P.; Storto, A.; Kucherer, C.; Berg, T.; Braun, P.; Poggensee, G.; Daumer, M.; Eberle, J.; Heiken, H.; Kaiser, R.; Knechten, H.; Korn, K.; Muller, H.; Neifer, S.; Schmidt, B.; Walter, H.; Gunsenheimer-Bartmeyer, B.; Harrer, T.; Hatzakis, A.; Zavitsanou, A.; Vassilakis, A.; Lazanas, M.; Chini, M.; Lioni, A.; Sakka, V.; Kourkounti, S.; Paparizos, V.; Antoniadou, A.; Papadopoulos, A.; Poulakou, G.; Katsarolis, I.; Protopapas, K.; Chryssos, G.; Drimis, S.; Gargalianos, P.; Xylomenos, G.; Lourida, G.; Psichogiou, M.; Daikos, G. L.; Sipsas, N. V.; Kontos, A.; Gamaletsou, M. N.; Koratzanis, G.; Sambatakou, E.; Mariolis, H.; Skoutelis, A.; Papastamopoulos, V.; Georgiou, O.; Panagopoulos, P.; Maltezos, E.; De Gascun, C.; Byrne, C.; Duffy, M.; Bergin, C.; Reidy, D.; Farrell, G.; Lambert, J.; O'Connor, E.; Rochford, A.; Low, J.; Coakely, P.; O'Dea, S.; Hall, W.; Levi, I.; Chemtob, D.; Grossman, Z.; De Luca, A.; Balotta, C.; Riva, C.; Mussini, C.; Caramma, I.; Capetti, A.; Colombo, M. C.; Rossi, C.; Prati, F.; Tramuto, F.; Vitale, F.; Ciccozzi, M.; Angarano, G.; Rezza, G.; Vasins, O.; Lipnickiene, V.; Hemmer, R.; Arendt, V.; Michaux, C.; Staub, T.; Sequin-Devaux, C.; Van Kessel, A.; Van Bentum, P. H. M.; Brinkman, K.; Connell, B. J.; Van Der Ende, M. E.; Hoepelman, I. M.; Kuipers, M.; Langebeek, N.; Richter, C.; Santegoets, R. M. W. J.; Schrijnders-Gudde, L.; Schuurman, R.; Van De Ven, B. J. M.; Kran, A. -M. B.; Ormaasen, V.; Aavitsland, P.; Stanczak, J. J.; Stanczak, G. P.; Firlag-Burkacka, E.; Wiercinska-Drapalo, A.; Jablonowska, E.; Maolepsza, E.; Leszczyszyn-Pynka, M.; Szata, W.; Camacho, R.; Palma, C.; Borges, F.; Paixao, T.; Duque, V.; Araujo, F.; Paraschiv, S.; Tudor, A. M.; Cernat, R.; Chiriac, C.; Dumitrescu, F.; Prisecariu, L. J.; Jevtovic, Dj.; Salemovic, D.; Stanekova, D.; Habekova, M.; Chabadova, Z.; Drobkova, T.; Bukovinova, P.; Shunnar, A.; Truska, P.; Lunar, M.; Babic, D.; Tomazic, J.; Vidmar, L.; Vovko, T.; Karner, P.; Monge, S.; Moreno, S.; Del Amo, J.; Asensi, V.; Sirvent, J. L.; De Mendoza, C.; Delgado, R.; Gutierrez, F.; Berenguer, J.; Garcia-Bujalance, S.; Stella, N.; De Los Santos, I.; Blanco, J. R.; Dalmau, D.; Rivero, M.; Segura, F.; Elias, M. J. P.; Alvarez, M.; Chueca, N.; Rodriguez-Martin, C.; Vidal, C.; Palomares, J. C.; Viciana, I.; Viciana, P.; Cordoba, J.; Aguilera, A.; Domingo, P.; Galindo, M. J.; Miralles, C.; Del Pozo, M. A.; Ribera, E.; Iribarren, J. A.; Ruiz, L.; De La Torre, J.; Vidal, F.; Clotet, B.; Heidarian, A.; Aperia-Peipke, K.; Axelsson, M.; Mild, M.; Karlsson, A.; Thalme, A.; Naver, L.; Bratt, G.; Blaxhult, A.; Gisslen, M.; Svennerholm, B.; Bjorkman, P.; Sall, C.; Mellgren, A.; Lindholm, A.; Kuylenstierna, N.; Montelius, R.; Azimi, F.; Johansson, B.; Carlsson, M.; Johansson, E.; Ljungberg, B.; Ekvall, H.; Strand, A.; Makitalo, S.; Oberg, S.; Holmblad, P.; Hofer, M.; Holmberg, H.; Josefson, P.; Ryding, U.; Bergbrant, I.. - In: CLINICAL INFECTIOUS DISEASES. - ISSN 1058-4838. - 62:5(2016), pp. 655-663. [10.1093/cid/civ963]
Transmission of HIV drug resistance and the predicted effect on current first-line regimens in Europe
Papadopoulos A.;Mussini C.;Stella N.;
2016
Abstract
Background. Numerous studies have shown that baseline drug resistance patterns may influence the outcome of antiretroviral therapy. Therefore, guidelines recommend drug resistance testing to guide the choice of initial regimen. In addition to optimizing individual patient management, these baseline resistance data enable transmitted drug resistance (TDR) to be surveyed for public health purposes. The SPREAD program systematically collects data to gain insight into TDR occurring in Europe since 2001. Methods. Demographic, clinical, and virological data from 4140 antiretroviral-naive human immunodeficiency virus (HIV)-infected individuals from 26 countries who were newly diagnosed between 2008 and 2010 were analyzed. Evidence of TDR was defined using the WHO list for surveillance of drug resistance mutations. Prevalence of TDR was assessed over time by comparing the results to SPREAD data from 2002 to 2007. Baseline susceptibility to antiretroviral drugs was predicted using the Stanford HIVdb program version 7.0. Results. The overall prevalence of TDR did not change significantly over time and was 8.3% (95% confidence interval, 7.2%-9.5%) in 2008-2010. The most frequent indicators of TDR were nucleoside reverse transcriptase inhibitor (NRTI) mutations (4.5%), followed by nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations (2.9%) and protease inhibitor mutations (2.0%). Baseline mutations were most predictive of reduced susceptibility to initial NNRTI-based regimens: 4.5% and 6.5% of patient isolates were predicted to have resistance to regimens containing efavirenz or rilpivirine, respectively, independent of current NRTI backbones. Conclusions. Although TDR was highest for NRTIs, the impact of baseline drug resistance patterns on susceptibility was largest for NNRTIs. The prevalence of TDR assessed by epidemiological surveys does not clearly indicate to what degree susceptibility to different drug classes is affected.File | Dimensione | Formato | |
---|---|---|---|
civ963 (1).pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
418.99 kB
Formato
Adobe PDF
|
418.99 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris