This paper presents a method for automated bearing fault detection via motor current analysis using Long Short-Term Memory networks. Minimal pre-processing is applied to current signals. The proposed approach is experimentally validated on a laboratory trial comprising different test sets for condition monitoring and fault diagnosis of a 6-poles induction motor. Preliminary results confirmed the effectiveness of the proposed method to detect various bearing faults under different operating conditions, such as: shaft radial load and output torque.

Automated Bearing Fault Detection via Long Short-Term Memory Networks / Immovilli, F.; Lippi, M.; Cocconcelli, M.. - (2019), pp. 452-458. ((Intervento presentato al convegno 12th IEEE International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, SDEMPED 2019 tenutosi a Toulouse (France) nel Aug 27, 2019 - Aug 30, 2019 [10.1109/DEMPED.2019.8864866].

Automated Bearing Fault Detection via Long Short-Term Memory Networks

Immovilli F.;Lippi M.;Cocconcelli M.
2019-01-01

Abstract

This paper presents a method for automated bearing fault detection via motor current analysis using Long Short-Term Memory networks. Minimal pre-processing is applied to current signals. The proposed approach is experimentally validated on a laboratory trial comprising different test sets for condition monitoring and fault diagnosis of a 6-poles induction motor. Preliminary results confirmed the effectiveness of the proposed method to detect various bearing faults under different operating conditions, such as: shaft radial load and output torque.
12th IEEE International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, SDEMPED 2019
Toulouse (France)
Aug 27, 2019 - Aug 30, 2019
452
458
Immovilli, F.; Lippi, M.; Cocconcelli, M.
Automated Bearing Fault Detection via Long Short-Term Memory Networks / Immovilli, F.; Lippi, M.; Cocconcelli, M.. - (2019), pp. 452-458. ((Intervento presentato al convegno 12th IEEE International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, SDEMPED 2019 tenutosi a Toulouse (France) nel Aug 27, 2019 - Aug 30, 2019 [10.1109/DEMPED.2019.8864866].
File in questo prodotto:
File Dimensione Formato  
IEEE paper.pdf

non disponibili

Descrizione: Articolo completo
Tipologia: Versione pubblicata dall'editore
Dimensione 846.68 kB
Formato Adobe PDF
846.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1215643
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 2
social impact