This paper presents a method for automated bearing fault detection via motor current analysis using Long Short-Term Memory networks. Minimal pre-processing is applied to current signals. The proposed approach is experimentally validated on a laboratory trial comprising different test sets for condition monitoring and fault diagnosis of a 6-poles induction motor. Preliminary results confirmed the effectiveness of the proposed method to detect various bearing faults under different operating conditions, such as: shaft radial load and output torque.
Automated Bearing Fault Detection via Long Short-Term Memory Networks / Immovilli, F.; Lippi, M.; Cocconcelli, M.. - (2019), pp. 452-458. (Intervento presentato al convegno 12th IEEE International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, SDEMPED 2019 tenutosi a Toulouse (France) nel Aug 27, 2019 - Aug 30, 2019) [10.1109/DEMPED.2019.8864866].
Automated Bearing Fault Detection via Long Short-Term Memory Networks
Immovilli F.;Lippi M.;Cocconcelli M.
2019
Abstract
This paper presents a method for automated bearing fault detection via motor current analysis using Long Short-Term Memory networks. Minimal pre-processing is applied to current signals. The proposed approach is experimentally validated on a laboratory trial comprising different test sets for condition monitoring and fault diagnosis of a 6-poles induction motor. Preliminary results confirmed the effectiveness of the proposed method to detect various bearing faults under different operating conditions, such as: shaft radial load and output torque.File | Dimensione | Formato | |
---|---|---|---|
IEEE paper.pdf
Accesso riservato
Descrizione: Articolo completo
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
846.68 kB
Formato
Adobe PDF
|
846.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris