We consider a communication scenario, in which an intruder tries to determine the modulation scheme of the intercepted signal. Our aim is to minimize the accuracy of the intruder, while guaranteeing that the intended receiver can still recover the underlying message with the highest reliability. This is achieved by perturbing channel input symbols at the encoder, similarly to adversarial attacks against classifiers in machine learning. In image classification, the perturbation is limited to be imperceptible to a human observer, while in our case the perturbation is constrained so that the message can still be reliably decoded by the legitimate receiver, which is oblivious to the perturbation. Simulation results demonstrate the viability of our approach to make wireless communication secure against state-of-the-art intruders (using deep learning or decision trees) with minimal sacrifice in the communication performance. On the other hand, we also demonstrate that using diverse training data and curriculum learning can significantly boost the accuracy of the intruder.
The Best Defense Is a Good Offense: Adversarial Attacks to Avoid Modulation Detection / Hameed, M. Z.; Gyorgy, A.; Gunduz, D.. - In: IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY. - ISSN 1556-6013. - 16(2020), pp. 1074-1087.
Data di pubblicazione: | 2020 |
Titolo: | The Best Defense Is a Good Offense: Adversarial Attacks to Avoid Modulation Detection |
Autore/i: | Hameed, M. Z.; Gyorgy, A.; Gunduz, D. |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1109/TIFS.2020.3025441 |
Rivista: | |
Volume: | 16 |
Pagina iniziale: | 1074 |
Pagina finale: | 1087 |
Codice identificativo ISI: | WOS:000584274200002 |
Codice identificativo Scopus: | 2-s2.0-85091686236 |
Citazione: | The Best Defense Is a Good Offense: Adversarial Attacks to Avoid Modulation Detection / Hameed, M. Z.; Gyorgy, A.; Gunduz, D.. - In: IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY. - ISSN 1556-6013. - 16(2020), pp. 1074-1087. |
Tipologia | Articolo su rivista |
File in questo prodotto:

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris