As Machine Learning (ML) applications are becoming ever more pervasive, fully-trained systems are made increasingly available to a wide public, allowing end-users to submit queries with their own data, and to efficiently retrieve results. With increasingly sophisticated such services, a new challenge is how to scale up to ever growing user bases. In this paper, we present a distributed architecture that could be exploited to parallelize a typical ML system pipeline. We propose a case study consisting of a text mining service, and discuss how the method can be generalized to many similar applications. We demonstrate the significance of the computational gain boosted by the distributed architecture by way of an extensive experimental evaluation.
Parallelizing Machine Learning as a service for the end-user / Loreti, D.; Lippi, M.; Torroni, P.. - In: FUTURE GENERATION COMPUTER SYSTEMS. - ISSN 0167-739X. - 105(2020), pp. 275-286.
Data di pubblicazione: | 2020 |
Titolo: | Parallelizing Machine Learning as a service for the end-user |
Autore/i: | Loreti, D.; Lippi, M.; Torroni, P. |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.future.2019.11.042 |
Rivista: | |
Volume: | 105 |
Pagina iniziale: | 275 |
Pagina finale: | 286 |
Codice identificativo ISI: | WOS:000515213000020 |
Codice identificativo Scopus: | 2-s2.0-85076252334 |
Citazione: | Parallelizing Machine Learning as a service for the end-user / Loreti, D.; Lippi, M.; Torroni, P.. - In: FUTURE GENERATION COMPUTER SYSTEMS. - ISSN 0167-739X. - 105(2020), pp. 275-286. |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
FGCS2019.pdf | Post-print dell'autore (bozza post referaggio) | Administrator Richiedi una copia |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris