Consumer contracts too often present clauses that are potentially unfair to the subscriber. We present an experimental study where machine learning is employed to automatically detect such potentially unfair clauses in online contracts. Results show that the proposed system could provide a valuable tool for lawyers and consumers alike.
Automated detection of unfair clauses in online consumer contracts / Lippi, M.; Palka, P.; Contissa, G.; Lagioia, F.; Micklitz, H. -W.; Panagis, Y.; Sartor, G.; Torroni, P.. - 302:(2017), pp. 145-154. (Intervento presentato al convegno 30th International Conference on Legal Knowledge and Information Systems, JURIX 2017 tenutosi a Kirchberg Campus of the University of Luxembourg, lux nel 2017) [10.3233/978-1-61499-838-9-145].
Automated detection of unfair clauses in online consumer contracts
Lippi M.;
2017
Abstract
Consumer contracts too often present clauses that are potentially unfair to the subscriber. We present an experimental study where machine learning is employed to automatically detect such potentially unfair clauses in online contracts. Results show that the proposed system could provide a valuable tool for lawyers and consumers alike.File | Dimensione | Formato | |
---|---|---|---|
JURIX2017.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
220.54 kB
Formato
Adobe PDF
|
220.54 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris