Argument-based decision making has been employed to support a variety of reasoning tasks over medical knowledge. These include evidence-based justifications of the effects of treatments, the detection of conflicts in the knowledge base, and the enabling of uncertain and defeasible reasoning in the health-care sector. However, a common limitation of these approaches is that they rely on structured input information. Recent advances in argument mining have shown increasingly accurate results in detecting argument components and predicting their relations from unstructured, natural language texts. In this study, we discuss evidence and claim detection from Randomized Clinical Trials. To this end, we create a new annotated dataset about four different diseases (glaucoma, diabetes, hepatitis B, and hypertension), containing 976 argument components (697 containing evidence, 279 claims). Empirical results are promising, and show the portability of the proposed approach over different branches of medicine.
Argument mining on clinical trials / Mayer, T.; Cabrio, E.; Lippi, M.; Torroni, P.; Villata, S.. - 305:(2018), pp. 137-148. (Intervento presentato al convegno 7th International Conference on Computational Models of Argument, COMMA 2018 tenutosi a pol nel 2018) [10.3233/978-1-61499-906-5-137].
Argument mining on clinical trials
Lippi M.;
2018
Abstract
Argument-based decision making has been employed to support a variety of reasoning tasks over medical knowledge. These include evidence-based justifications of the effects of treatments, the detection of conflicts in the knowledge base, and the enabling of uncertain and defeasible reasoning in the health-care sector. However, a common limitation of these approaches is that they rely on structured input information. Recent advances in argument mining have shown increasingly accurate results in detecting argument components and predicting their relations from unstructured, natural language texts. In this study, we discuss evidence and claim detection from Randomized Clinical Trials. To this end, we create a new annotated dataset about four different diseases (glaucoma, diabetes, hepatitis B, and hypertension), containing 976 argument components (697 containing evidence, 279 claims). Empirical results are promising, and show the portability of the proposed approach over different branches of medicine.File | Dimensione | Formato | |
---|---|---|---|
COMMA2018.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
144.43 kB
Formato
Adobe PDF
|
144.43 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris