This paper presents the latest developments of the use of memory network models in detecting and explaining unfair terms in online consumer contracts. We extend the CLAUDETTE tool for the detection of potentially unfair clauses in online Terms of Service, by providing to the users the explanations of unfairness (legal rationales) for five different categories: Arbitration, unilateral change, content removal, unilateral termination, and limitation of liability.
Explaining potentially unfair clauses to the consumer with the claudette tool / Liepina, R.; Ruggeri, F.; Lagioia, F.; Lippi, M.; Drazewski, K.; Torroni, P.. - 2645:(2020), pp. 61-64. (Intervento presentato al convegno Natural Legal Language Processing Workshop 2020 tenutosi a USA nel 2020).
Explaining potentially unfair clauses to the consumer with the claudette tool
Lippi M.;
2020
Abstract
This paper presents the latest developments of the use of memory network models in detecting and explaining unfair terms in online consumer contracts. We extend the CLAUDETTE tool for the detection of potentially unfair clauses in online Terms of Service, by providing to the users the explanations of unfairness (legal rationales) for five different categories: Arbitration, unilateral change, content removal, unilateral termination, and limitation of liability.File | Dimensione | Formato | |
---|---|---|---|
NLLP2020.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
796.09 kB
Formato
Adobe PDF
|
796.09 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris