In 2015, the United Nation General Assembly adopted the 2030 Agenda for Sustainable Development and its 17 Sustainable Development Goals aiming at ending all forms of poverty, fighting inequalities, and tackling climate change. We collected Twitter data about the 2030 Agenda from May 9th to November 9th, 2018. The aim of this work is to obtain a classification of each tweet in the corpus according to the “Information”—“Action” categories, in order to detect whether a tweet refers to an event or it has only an informative-disclosure purpose. It seems particularly interesting to understand how and to what extent people and organizations are playing a more active role in shaping the process of responding locally and internationally to climate change. Explicit intention to act or inform had been captured by hand coding of a randomly selected sample of tweets and then the classification had been extended to the whole corpus through a supervised machine learning method. Overall, our classification supervised model has produced satisfactory results.
Supervised Machine Learning Methods to Disclose Action and Information in “U.N. 2030 Agenda” Social Media Data / Sciandra, Andrea; Surian, Alessio; Finos, Livio. - In: SOCIAL INDICATORS RESEARCH. - ISSN 1573-0921. - 156:2-3(2021), pp. 689-699. [10.1007/s11205-020-02523-4]
Supervised Machine Learning Methods to Disclose Action and Information in “U.N. 2030 Agenda” Social Media Data
Sciandra, Andrea;
2021
Abstract
In 2015, the United Nation General Assembly adopted the 2030 Agenda for Sustainable Development and its 17 Sustainable Development Goals aiming at ending all forms of poverty, fighting inequalities, and tackling climate change. We collected Twitter data about the 2030 Agenda from May 9th to November 9th, 2018. The aim of this work is to obtain a classification of each tweet in the corpus according to the “Information”—“Action” categories, in order to detect whether a tweet refers to an event or it has only an informative-disclosure purpose. It seems particularly interesting to understand how and to what extent people and organizations are playing a more active role in shaping the process of responding locally and internationally to climate change. Explicit intention to act or inform had been captured by hand coding of a randomly selected sample of tweets and then the classification had been extended to the whole corpus through a supervised machine learning method. Overall, our classification supervised model has produced satisfactory results.File | Dimensione | Formato | |
---|---|---|---|
Accepted_Version_SML_agenda2030.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
328.77 kB
Formato
Adobe PDF
|
328.77 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris