We show that the ordinary least squares (OLS) estimates of population parameters for Markov switching vector autoregressive (MS VAR) models coincide with the maximum likelihood estimates. Then we propose an algorithm in matrix form for the estimation of model parameters, and derive an explicit expression in closed-form for the asymptotic covariance matrix of the OLS estimator of such models. The obtained characterization of the asymptotic variance is new to our knowledge. It is easier to program than the usual approach based on second derivatives, and more accurate. Our theorems generalize the classical results known for a linear VAR process, and complete those existing in the literature on the estimation of the asymptotic covariance matrix for multivariate stationary time series. Numerical simulations are provided to illustrate the obtained theoretical results. Finally, an application on energy use and economic growth in the Euro area gives some insights on the nonlinear nature of the corresponding time series, and reproduces the major stylized facts.
OLS estimation of Markov Switching VAR models: asymptotics and application to energy use / Cavicchioli, Maddalena. - In: ASTA ADVANCES IN STATISTICAL ANALYSIS. - ISSN 1863-8171. - (2020), pp. 1-30.
Data di pubblicazione: | 2020 |
Titolo: | OLS estimation of Markov Switching VAR models: asymptotics and application to energy use |
Autore/i: | Cavicchioli, Maddalena |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s10182-020-00383-4 |
Rivista: | |
Pagina iniziale: | 1 |
Pagina finale: | 30 |
Codice identificativo ISI: | WOS:000581564300001 |
Codice identificativo Scopus: | 2-s2.0-85093874456 |
Citazione: | OLS estimation of Markov Switching VAR models: asymptotics and application to energy use / Cavicchioli, Maddalena. - In: ASTA ADVANCES IN STATISTICAL ANALYSIS. - ISSN 1863-8171. - (2020), pp. 1-30. |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
final publication_asta.pdf | Versione dell'editore (versione pubblicata) | Administrator Richiedi una copia |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris