Let G = (V, E) be an undirected graph with vertex set V and edge set E. A clique C of G is a subset of the vertices of V with every pair of vertices of C adjacent. A maximum clique is a clique with the maximum number of vertices. A tabu search algorithm for the maximum clique problem that uses an exact algorithm on subproblems is presented. The exact algorithm uses a graph coloring upper bound for pruning, and the best such algorithm to use in this context is considered. The final tabu search algorithm successfully finds the optimal or best known solution for all standard benchmarks considered. It is compared with a state-of-the-art algorithm that does not use exact search. It is slower to find the known optimal solution for most instances but is faster for five instances and finds a larger clique for two instances.
The Use of an Exact Algorithm Within a Tabu Search Maximum Clique Algorithm / Smith, Derek H.; Montemanni, Roberto; Perkins, Stephanie. - In: ALGORITHMS. - ISSN 1999-4893. - 13:10(2020), pp. 253-253. [10.3390/a13100253]
The Use of an Exact Algorithm Within a Tabu Search Maximum Clique Algorithm
Roberto Montemanni;
2020
Abstract
Let G = (V, E) be an undirected graph with vertex set V and edge set E. A clique C of G is a subset of the vertices of V with every pair of vertices of C adjacent. A maximum clique is a clique with the maximum number of vertices. A tabu search algorithm for the maximum clique problem that uses an exact algorithm on subproblems is presented. The exact algorithm uses a graph coloring upper bound for pruning, and the best such algorithm to use in this context is considered. The final tabu search algorithm successfully finds the optimal or best known solution for all standard benchmarks considered. It is compared with a state-of-the-art algorithm that does not use exact search. It is slower to find the known optimal solution for most instances but is faster for five instances and finds a larger clique for two instances.File | Dimensione | Formato | |
---|---|---|---|
algorithms-13-00253-v2.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
247.03 kB
Formato
Adobe PDF
|
247.03 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris