Designing highly usable and ergonomic control dashboards is fundamental to support the user in managing and properly setting complex machines, like trains, airplanes, trucks and tractors. Contrarily, control dashboards are usually big, intrusive, full of controls and not really usable for different users. This paper focuses on the re-design of an ergonomic and compact dashboard for tractor control, proposing an innovative methodology in line with human-centered design and ergonomics principles. The study started by shifting the focus from how a machine works to how a task has to be performed and how the user interacts with the machine. It uses virtual simulations and human performance analysis tools to support the concept generation and the detailed design, and to test the new idea with users in the virtual lab. Indeed, within the virtual environment, different configurations of controls can be tested, checking which controls are mostly used and measuring human performance indexes (i.e., postural comfort and mental workload) for each configuration. Virtual mannequins can be used to as “digital twins” to interact with virtual items and to calculate robust comfort indicators during task execution. The study adopted the proposed methodology to an industrial use case to develop a usable and compact armrest for a new tractor platform. The new armrest is smaller than the previous one (-30% in dimensions), more usable (keeping on board only frequent controls, better positioned), and more comfortable (it satisfies 95% of the population size). This new approach could be used also for the design of new products.
Application of Innovative Tools to Design Ergonomic Control Dashboards / Grandi, Fabio; Peruzzini, Margherita; Campanella, Claudia E.; Pellicciari, Marcello. - 12:(2020), pp. 193-200. [10.3233/ATDE200077]
Application of Innovative Tools to Design Ergonomic Control Dashboards
Grandi, Fabio;Peruzzini, Margherita
;Pellicciari, Marcello
2020
Abstract
Designing highly usable and ergonomic control dashboards is fundamental to support the user in managing and properly setting complex machines, like trains, airplanes, trucks and tractors. Contrarily, control dashboards are usually big, intrusive, full of controls and not really usable for different users. This paper focuses on the re-design of an ergonomic and compact dashboard for tractor control, proposing an innovative methodology in line with human-centered design and ergonomics principles. The study started by shifting the focus from how a machine works to how a task has to be performed and how the user interacts with the machine. It uses virtual simulations and human performance analysis tools to support the concept generation and the detailed design, and to test the new idea with users in the virtual lab. Indeed, within the virtual environment, different configurations of controls can be tested, checking which controls are mostly used and measuring human performance indexes (i.e., postural comfort and mental workload) for each configuration. Virtual mannequins can be used to as “digital twins” to interact with virtual items and to calculate robust comfort indicators during task execution. The study adopted the proposed methodology to an industrial use case to develop a usable and compact armrest for a new tractor platform. The new armrest is smaller than the previous one (-30% in dimensions), more usable (keeping on board only frequent controls, better positioned), and more comfortable (it satisfies 95% of the population size). This new approach could be used also for the design of new products.File | Dimensione | Formato | |
---|---|---|---|
ATDE-12-ATDE200077.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.47 MB
Formato
Adobe PDF
|
2.47 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris