The focus of this paper is on the intermolecular interaction active between polyaniline (PANI) and 10-camphorsulfonic acid (10CSA). Enantiopure 10CSA, present in the electropolymerization solution, promotes chiral induction in the supramolecular polyaniline polymer (cPANI). Tight integration of experimental data (circular dichroism, CD, near edge X-ray absorption spectra, NEXAFS, conductive probe atomic force microscopy, CP-AFM) and theoretical [density functional theory, (DFT)] results allows to unfold the nature of the electronic interaction between PANI and 10CSA and to shed light on the physical interactions inducing the chiral character to bulk pristine non-chiral PANI: eventually yielding cPANI. The electropolymerization follows a “wet chemistry” method: electrochemical polymerization of aniline in the co-presence in bulk solution of enantiopure 10-camphorsulfonic acid (10CSA). The latter is exploited as chirality inductor. The method of integration between experimental results with ab-initio theoretical calculations, strongly suggests that the chiral induction exerted by the CSA stems from exchange interaction between CSA and PANI.
Exchange Interactions Drive Supramolecular Chiral Induction in Polyaniline / Mishra, S.; Kumar, A.; Venkatesan, M.; Pigani, L.; Pasquali, L.; Fontanesi, C.. - In: SMALL METHODS. - ISSN 2366-9608. - 4:10(2020), pp. 2000617-2000617. [10.1002/smtd.202000617]
Exchange Interactions Drive Supramolecular Chiral Induction in Polyaniline
Pigani L.;Pasquali L.;Fontanesi C.
2020
Abstract
The focus of this paper is on the intermolecular interaction active between polyaniline (PANI) and 10-camphorsulfonic acid (10CSA). Enantiopure 10CSA, present in the electropolymerization solution, promotes chiral induction in the supramolecular polyaniline polymer (cPANI). Tight integration of experimental data (circular dichroism, CD, near edge X-ray absorption spectra, NEXAFS, conductive probe atomic force microscopy, CP-AFM) and theoretical [density functional theory, (DFT)] results allows to unfold the nature of the electronic interaction between PANI and 10CSA and to shed light on the physical interactions inducing the chiral character to bulk pristine non-chiral PANI: eventually yielding cPANI. The electropolymerization follows a “wet chemistry” method: electrochemical polymerization of aniline in the co-presence in bulk solution of enantiopure 10-camphorsulfonic acid (10CSA). The latter is exploited as chirality inductor. The method of integration between experimental results with ab-initio theoretical calculations, strongly suggests that the chiral induction exerted by the CSA stems from exchange interaction between CSA and PANI.File | Dimensione | Formato | |
---|---|---|---|
small.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.79 MB
Formato
Adobe PDF
|
2.79 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris