Nowadays, Knowledge-Based systems are widespread decision-making tools applied in product design and manufacturing planning. The series production requires agile and rapid decision-making methods to support actions in manufacturing lines. Therefore, agent-based tools are necessary to support the detection, diagnosis, and correction of accidental production faults. The context of Industry 4.0 has been enhancing the integration of sensors in manufacturing lines to monitor production and analyze failures. The motivation of the proposed research is to study and validate decision theory methods to be applied in smart manufacturing. This paper shows a Knowledge-Based approach to support action decision-making processes by a Bayesian network model. The proposed method aims at solving production problems detected in the manufacturing process. In particular, the focus is on the automatic production of cooker hoods. A case study describes how the approach can be applied in the real-time control actions, after a problem in quality is detected.
A decision theory approach to support action plans in cooker hoods manufacturing / Cicconi, P.; Postacchini, L.; Bergantino, N.; Capuzzi, G.; Russo, A. C.; Raffaeli, R.; Germani, M.. - In: DYNA. - ISSN 1989-1490. - 94:3(2019), pp. 203-208. [10.6036/8890]
A decision theory approach to support action plans in cooker hoods manufacturing
Raffaeli R.;
2019
Abstract
Nowadays, Knowledge-Based systems are widespread decision-making tools applied in product design and manufacturing planning. The series production requires agile and rapid decision-making methods to support actions in manufacturing lines. Therefore, agent-based tools are necessary to support the detection, diagnosis, and correction of accidental production faults. The context of Industry 4.0 has been enhancing the integration of sensors in manufacturing lines to monitor production and analyze failures. The motivation of the proposed research is to study and validate decision theory methods to be applied in smart manufacturing. This paper shows a Knowledge-Based approach to support action decision-making processes by a Bayesian network model. The proposed method aims at solving production problems detected in the manufacturing process. In particular, the focus is on the automatic production of cooker hoods. A case study describes how the approach can be applied in the real-time control actions, after a problem in quality is detected.File | Dimensione | Formato | |
---|---|---|---|
A34-DYNA2019.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
855.83 kB
Formato
Adobe PDF
|
855.83 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris